Testing Eventual Consistency in
sriak

Ulf Norell, John Hughes
Quviqg AB

(with Scott Lystig Fritchie, Jon I\/Ieredith"@

Dave Smith) oo



* Distributed

* Scalable

* Replicated

* Fault-tolerant

* High availability

* Low latency

* No SQL—just keys and values




How can we
be sure Riak
is correct?

What does
that even
mean?

QuickCheck!



Keep It Simple!




Put and Get

put

0 get

put

0
1

get



State transition
function

Quick
Check

postconditions



Example
g | wonder if
our users
put know that?
Sriak

~X|

You
shouldn’t
do that!

We didn’t
realise we
could lose data
that way.

get

W O R




Should we put
vector clocks
into the model?




l”

Formalise "You shouldn’t do that

 Add to the model:
— Client’s last view of the value (result of get)

* Add a precondition:

— Every put must update the client’s view (if
present)

* QuickCheck generates tests respecting the
precondition



Conflicts

out
0 out
1
10,1}fe==
2' out

get



Modelling Conflicts

 The state is a list (actually bag) of values
* The client’s view is a list of values

e put replaces those values in the state



Example

-
0 =

get

{011 put

put
3 a

gt
{ml 2* A vector clock

O optimisation...




Modelling Conflicts

 The state is a list (actually bag) of values

“fresh” or “stale”

* The client’s view isﬂ@tﬁﬂﬂ)ﬂa@g
* put replaces tbebieslARe k3

the state if the client’s view was fresh

adds a conflict if the client’s view was stale



Redundancy and Fault Tolerance

handoff



Testing Eventual Consistency

put
get arbitrary
put fallbacks
get
nandoff "1+l no more
nandoff .
are possible
nandoff

get €—— This should see a
consistent state



Should we model
the locations of
values?




Modelling Eventual Consistency

* Avalue may appear in the final get, if it was
ever put

* Avalue must appear in the final get, if it was
put, and never replaced



0

put

get

notfound get
put
put
get

Conflict: must see 1 and 2



S
ngOC K!!
RROR'

Riak
fi/not e



. understanding what
QuickCheck... @

o)
0 O
e ..let us gradually develop a specification,
validated against the implementation

e ..revealed potentially serious bugs

e ..guided the development of alternative
solutions that fix the problems



GOOD
NEWS!!

Riak IS eventually consistent!
—thanks to QuickCheck ©



