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* Distributed

* Scalable

* Replicated

* Fault-tolerant

* High availability

* Low latency

* No SQL—just keys and values




How can we
be sure Riak
is correct?

What does
that even
mean?

QuickCheck!



Keep It Simple!




Put and Get
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Example
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You
shouldn’t
do that!

We didn’t
realise we
could lose data
that way.
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Should we put
vector clocks
into the model?
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Formalise "You shouldn’t do that

 Add to the model:
— Client’s last view of the value (result of get)

* Add a precondition:

— Every put must update the client’s view (if
present)

* QuickCheck generates tests respecting the
precondition



Conflicts
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Modelling Conflicts

 The state is a list (actually bag) of values
* The client’s view is a list of values

e put replaces those values in the state
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Modelling Conflicts

 The state is a list (actually bag) of values

“fresh” or “stale”

* The client’s view isﬂ@tﬁﬂﬂ)ﬂa@g
* put replaces tbebieslARe k3

the state if the client’s view was fresh

adds a conflict if the client’s view was stale



Redundancy and Fault Tolerance

handoff



Testing Eventual Consistency

put
get arbitrary
put fallbacks
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get €—— This should see a
consistent state



Should we model
the locations of
values?




Modelling Eventual Consistency

* Avalue may appear in the final get, if it was
ever put

* Avalue must appear in the final get, if it was
put, and never replaced
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. understanding what
QuickCheck... @

o)
0 O
e ..let us gradually develop a specification,
validated against the implementation

e ..revealed potentially serious bugs

e ..guided the development of alternative
solutions that fix the problems



GOOD
NEWS!!

Riak IS eventually consistent!
—thanks to QuickCheck ©



