Erlang in the Browser

Fredrik Svahn



Outline

« What is “Erlang in the browser™?
e Why?
« Behind the scenes

« Writing your own emulator - experiences
« Current status & Future plans



What is it?

An Erlang virtual machine in javascript

A subset of the functionality in BEAM

Based on reverse engineering

Understands the BEAM file format

Executes BEAM opcodes like the normal Erlang VM
API for javascript functions and accessing the DOM
Can connect/communicate with a “normal” node

Example Erlang in browser demo on github



Why"?

« To learn and make it easier for others to learn
» Javascript is everywhere

« Running Erlang programs without installing

. Test the limits of javascript in browsers

« Because it seemed like a funny challenge...



Behind the scenes

« The beam file loader

« The emulator main loop
« Built in functions, BIF:s
o Distribution



The BEAM file loader

Loads individual beam files or tar files
Uses sourced in zlib compression library
Uses Typed Arrays with fallback to strings

Loading beam files is time consuming in older
browsers — optimize?

Cannot do hot code loading (at the moment)



The Emulator main loop

« Large loop over a switch statement, process
yields when runs out of reductions

« Handles some 120 opcodes

« Most opcodes 3-4 lines javascript

« Mostly quite simple to reverse engineer
« Some opcodes seem to be obsolete?



Built in functions — BIF:s

 Lots of work — mostly validating function
arguments

« Some BIF stubs/hacks needed to run a full
system

« Some BIF:s will never work due to browser
limitations



Distribution mechanism

Using sockjs to connect to server
Messages encoded in the external term format
Server uses proxy (similar to the ssl_dist proxy)

Makes it possible to run common test master node
logging and collecting statistics on server

Example code available in tester.erl

Client browser cannot communicate directly with
other browsers, only server (same origin policy)



Test Setup using Distribution

Common Test
Master

\ 4

Sockjs proxy
(Erlang code)

Common Test Client |
Emulator

¥




EXxperiences

« BEAM opcodes are beautiful in their simplicity
» Implementing BIF:s is a lot of work

« Error handling is hard

« Bitstrings ops are tricky

« The OTP test server is great!

« Javascript engines differ — a lot



Characteristics

Factor 10-20 slower than BEAM on same HW
BIF dispatch significantly slower

Lists use more memory

Garbage collection on system level

Timers likely to be less exact

erlang:now()



“Near” future plans

Bitstrings

ETS — a huge undertaking

Fully compliant to Erlang External Term format
Improving the Pass Rate for OTP test suites
Modularize

- Make it possible to plug in a more efficient loader
- Split out ETS and “file driver”
Make support and using some minifier/js code optimizer

More efficient BIF calls
Make it more object oriented



Future plans — AKA wild ideas

Compiling Erlang to directly to javascript for
hot functions

Local persistent storage using HTMLS
localStorage()

Multithreading using HTMLS web workers
Distribution proxy
Quickcheck style testing



Show me the code...

Demo:



Contributing?

« Please contribute (or fork or write your own)!

« Contributions must be made available under
MIT and GPL licenses

« Contributions will generally be rejected if they

— Make the emu slower
— Decrease the pass rate



Thanks for your time!

Questions?



