
Erlang in the Browser

Fredrik Svahn

Outline

l  What is “Erlang in the browser”?
l  Why?
l  Behind the scenes
l  Writing your own emulator - experiences
l  Current status & Future plans

What is it?

l  An Erlang virtual machine in javascript
l  A subset of the functionality in BEAM
l  Based on reverse engineering
l  Understands the BEAM file format
l  Executes BEAM opcodes like the normal Erlang VM
l  API for javascript functions and accessing the DOM
l  Can connect/communicate with a “normal” node

l  Example Erlang in browser demo on github

Why?

l  To learn and make it easier for others to learn
l  Javascript is everywhere
l  Running Erlang programs without installing
l  Test the limits of javascript in browsers

l  Because it seemed like a funny challenge...

Behind the scenes

l  The beam file loader
l  The emulator main loop
l  Built in functions, BIF:s
l  Distribution

The BEAM file loader

l  Loads individual beam files or tar files
l  Uses sourced in zlib compression library
l  Uses Typed Arrays with fallback to strings
l  Loading beam files is time consuming in older

browsers – optimize?
l  Cannot do hot code loading (at the moment)

The Emulator main loop

l  Large loop over a switch statement, process
yields when runs out of reductions

l  Handles some 120 opcodes
l  Most opcodes 3-4 lines javascript
l  Mostly quite simple to reverse engineer
l  Some opcodes seem to be obsolete?

Built in functions – BIF:s

l  Lots of work – mostly validating function
arguments

l  Some BIF stubs/hacks needed to run a full
system

l  Some BIF:s will never work due to browser
limitations

Distribution mechanism

l  Using sockjs to connect to server
l  Messages encoded in the external term format
l  Server uses proxy (similar to the ssl_dist proxy)
l  Makes it possible to run common test master node

logging and collecting statistics on server
l  Example code available in tester.erl
l  Client browser cannot communicate directly with

other browsers, only server (same origin policy)

Sockjs proxy
(Erlang code)

Emulator

Common Test
Master

Common Test Client

Test Setup using Distribution

Experiences

l  BEAM opcodes are beautiful in their simplicity
l  Implementing BIF:s is a lot of work
l  Error handling is hard
l  Bitstrings ops are tricky
l  The OTP test server is great!
l  Javascript engines differ – a lot

Characteristics

l  Factor 10-20 slower than BEAM on same HW
l  BIF dispatch significantly slower
l  Lists use more memory
l  Garbage collection on system level
l  Timers likely to be less exact
l  erlang:now()

“Near” future plans

l  Bitstrings
l  ETS – a huge undertaking
l  Fully compliant to Erlang External Term format
l  Improving the Pass Rate for OTP test suites
l  Modularize
-  Make it possible to plug in a more efficient loader
-  Split out ETS and “file driver”

l  Make support and using some minifier/js code optimizer
l  More efficient BIF calls
l  Make it more object oriented

Future plans – AKA wild ideas

l  Compiling Erlang to directly to javascript for
hot functions

l  Local persistent storage using HTML5
localStorage()

l  Multithreading using HTML5 web workers
l  Distribution proxy
l  Quickcheck style testing

Show me the code...

https://github.com/svahne/browserl

Demo:

http://svahne.github.com/browserl/

Contributing?

l  Please contribute (or fork or write your own)!

l  Contributions must be made available under

MIT and GPL licenses
l  Contributions will generally be rejected if they

–  Make the emu slower
–  Decrease the pass rate

Thanks for your time!

Questions?

