
Building a Realtime Game
Backend from Scratch

(how we use Erlang and why)

Jeremy Ong © Quark Games Inc.

whoami

jeremyong

banachtarski @ freenode

jeremyong.com
quarkgames.com

What are we doing @ qg?

● New real-time, 3D game set to launch in the
next couple months

● Active development for only ~5 months (with
3 engineers, although more have been
added recently)!

Loose Game Description

● Players can buy and upgrade units
● Players use a subset of their inventory to

battle opponents
● Players interact with each other via the

game itself, chat, and matchmaking
● Players interact with the server by making

purchases, modifying their inventory, and
managing their accounts

Why this talk?

● Game programmers = OO programmers
(traditionally)

● Erlang plays *very* nicely with games for
particular roles

● How do I get started?
● What can go wrong?
● I already know Erlang, want to help train up

others

The "pitch" - Why Erlang

● Low latency
● Stateful
● Shared nothing
● Good concurrency (a small squadron of

beefier machines is more cost-efficient than
an army of trash cans)

● Intuitive to use

Real Time Server Applications

Other various
programming
languages

Erlang (nailgun)

BUT
there are many wrong ways to use a nail

gun!

How do we explain how to
use and think about

Erlang?

cheap 24/7 min-wage workers, factory
machines (that we just throw out and
replace), build orders, warehouses,

repairmen, blueprints that constantly change
and can change running machines

Erlang Sweatshop SF 2014??????

Blueprints and Instruction
manuals

Code, modules, functions (used to start,
create, and run factory machines)

Machines
Processes: the things that do work. Easy to
make new ones. We throw them out once

they finish

Machines have conveyor
belts

Sequential mailbox for both sending and
receiving data needed to do something

Example
cuz_im_a_machiiiiiiiiine_baby() ->
 receive
 hi ->
 io:format(
 "And I've got the keys, baby"),
 cuz_im_a_machiiiiiiiiine_baby();
 bye ->
 io:format("... I'm not unstoppable")
 end.

spawn(fun cuz_im_a_machiiiiiiiiine_baby/0).

Sweatshop Floor Space
Available memory (can only accomodate so

many machines)

"Repair"men
Supervisors: they "fix" your broken machines

by throwing them out and replacing them
with a new one

Sweatshop Workers
Scheduler: starts, suspends, runs, and

terminates the machines (flipping switches)

hopped
up

Power
Your cpu cores. Can only power one

machine per core at a time

1. Specify system requirements
2. Imagine you had to run the system with

manual labor and pencil/paper
3. Describe all the occupations you would

need, how many you would need
4. Try to map each occupation with an OTP

behaviour, and if this isn't possible, describe
the behaviour in full

5. Write it piece by piece until finished

Workflow

Our Architecture

Backend Responsibilities

● Authentication + account creation
● Manage user state (e.g. allow user to

purchase units)
● Route data between users and an instance

of a C# game runtime
● Monitor activity in real time

Performance Requirements

● Users do many things clumped together
● Fast response times are a must
● Response times should be relatively load

insensitive

Exercise: Should this
be a separate
machine/process?

Not usually, no
Know thy scheduler

Let the user process do (most of) its
own work

● Ignore the temptation to handle all requests
asynchronously (think first)

● Let the scheduler allocate resources fairly
● Serialized commits = consistent data
● Isolate errors
● Let it die!

Other Architectural
Principles

Perform operations in memory

● Users clump their actions, use sessions
● Read once, write multiple times
● Consider how your data is stored (natural

transformation between in memory
representation, and db representation)

One dirty module ... to
find them ... one dirty

module to bind them ...

One dirty module per foreign
dependency

● Much more easy to test (fewer
dependencies to inject)

● Easier (possible) to swap out or modify
foreign dependencies

● Mock out your dirty module and provide
fixtures (we use meck, websocket_client)

Homogenize your servers

● Don't make any machine "special" if you can
help it (but do it if you should)

● Simplify deploys/upgrades/migrations/setup
● Minimize CAP and Murphy's Law exposure
● Coordination is hard!

Erlang supports hot swapping.
Use it!

● Annoying to set up, (relatively) painless
thereafter

● One of the best features that people seem to
avoid

● Test, test, test.
● Automate, automate, automate.

Thread the entire state

● Old approach: provide each user accessible
function with exactly the information needed

● Just pass the state variable
● Leverage Erlang's immutability
● The calling module should not know how to

decompose and recompose the data

Sample code:

handle_response(State, Text) ->
 {Module, Function, Args} = extract_mfa(Text),
 Module:Function(State, Args).

Make this secure
obviously!!

Example: adding a unit
add_unit(State, [Unit]) ->
 Currency = lookup_currency(State),
 Cost = cost_of(Unit)
 case deduct_currency(State, Cost) of
 {ok, State1} ->
 State2 = append_unit(State, Unit),
 db_lib:persist(State, manager),
 {reply, success, State2};
 error ->
 {reply, cannot_afford, State}
 end.

Standardize your protocols

● MFA style API (natural mapping to erlang
MFA)

● Data that can't or shouldn't be human
readable is serialized and deserialized using
protocol buffers

● Protocol buffers + Interoperability = <3

Tips for building an Erlang system

The tips (do the right things (and
actually do them))

● Benchmark
● Log
● Test (unit, integration, system)
● Actually use your tests
● Document
● Typespec (and actually use dialyzer)

Libraries We Use at a Glance

● Application
○ cowboy* (extend)
○ libprotobuf* (TensorWrench)
○ jsx (talentdeficit)
○ lager (basho)
○ bcrypt* (smarkets)

● Testing/Benchmarking
○ common_test
○ meck (eproxus)
○ websocket_client* (jeremyong)
○ basho_bench (self-evident)

* indicates pull request pending or accepted

Conclusion
● Think like a ruthless

sweatshop owner
● Teach others around you

to think like ruthless
sweatshop owners

● Don't do the above two
actions literally

We're Hiring!

● If you like games and solving tough
programming problems, get in touch!

● jeremy@quarkgames.com

https://www.surveymonkey.
com/s/qgprivatebeta

Need iPad 2 or newer

Private Beta

