Code Janitor

nobody’s dream, everyone’s job
(and how Erlang can help)

Who?

~ Learn You Some Erlang "

~ Erlang Solutions Ltd.
~ AdGear Technologies

~ Erlang User of The
Year 2012 1y

~ Erlang shell history Fred Hebert

~ Heroku

Twitter: @MononcQc
Blog: http:/ferd.ca

Maintenance 1is the
earn the right to write new code.

Time spent

30% 70%

dev maintenance

Time spent

30% 70%

dev maintenance

60% 3 80% of costs —

Types of maintenance

~ Corrective ~
~ Adaptive
~ Perfective 4f /'

~ Emergencigs”

Lehman’s laws

~ A program that is used and that as an
Implementation of its specification reflects
some other reality, undergoes continual
change or becomes progressively less
useful. The change or decay process
continues until it is judged more cost
effective to replace the system with a
recreated version.

Lehman’s laws

~ As an evolving program is continually
changed, its complexity, reflecting
deteriorating structure, increases unless
work is done to maintain or reduce it.

The problem with complexity is

Consequences?

30% 70%

dev maintenance

_t

22.5% to 57.6% of any software project is
spent trying to understand the system

Information sources

~ Code
~ Cowaorkers
~ Tools, knowledge bases (bug trackers, etc.)

~ Documentation

You are hired to take over an existing Erlang code base.
Based on your experience, what do you think is important
for you to feel comfortable and take 'ownership' of the code?

Use of source control (git, svn, hg, etc.)

Management giving you time to adapt

The respect of OTP principles by using behaviours

Presence of tests (eunit,common test, QuickCheck/PropEr/Triq)
Documentation at a higher level

Familiarity with the problem domain

The presence of a bug tracker

Coworkers who know the code base

Being able to talk to the architect (or whoever built the product)
Comments in code / EDoc at the module level

Type specifications / they use Dialyzer

The respect of OTP principles by using releases and relups
Using rebar

-3

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

M |t's essential ™ It's good to have M| don't care M It makes things worse

Why OTP Matters

The importance of behaviours

Components

~ Workers
~ Supervisors

~ Applications

Turning into Lego

Protocols

~ |solation
~ Message passing

~ Define standards in order to structure the
abstract (ex: TCP/IP, BitTorrent Wire, HTTP)

~ Applications and internal OTP protocols

Modifications Erlang/OTP

Understanding from afar

~ Used in all domains

~ Quick understanding of a system’s
structure

~ Application metadata

Standard patterns

~ Servers
~ finite state machines (FSMs)
~ event handlers

~ supervisors

Patterns in langages

Everyone uses it!

Reverse Engineering ++

~ Tracing!
~ sys:get_status(Worker)
~ sys:trace(Worker, true)

~ DBG

Importance of time given by management to adapt, over knowledge of OTP

M |t makes things worse ™ | don't care ™ It's good to have M It's essential

O%_‘_
1 2 3 4 5

Knowledge of OTP (non-null)

Problems

~ Libraries and version clashes
~ No namespaces

~ Package management

~ 118n, l10n

systems are

Sources

~ Programs, Life Cycles, and Laws of Software
Evolution, MM. Lehman, 1980

~ Software Maintenance, Gerardo Canfora and
Aniello Cimitile, 2000

~ Software Maintenance - clarityincode.com

~ Poll Results: Erlang & Maintenance - ferd.ca

Learn You Some
Erlang for
Great Good!

A Beginner’s Guide

S
H
A
M
&
C
=
S
S

nostarch.com/erlang

