
The Pooler Story

https://github.com/seth/pooler
1

In the summer of 2010.
Coming home from work on the bus with a couple Opscode co-workers, discussing a weekend project I was planning for my
backyard.
Passenger wonders what in the world we’re working on.

https://github.com/seth/pooler
https://github.com/seth/pooler

The Pooler Story

https://github.com/seth/pooler
2

answer: a sandbox.

https://github.com/seth/pooler
https://github.com/seth/pooler

Simple.

3

A box. Four sides. no bottom, no top.
Nothing is simple.

When was the last time
you used a saw?

4

Screws or nails? Type of wood? How should the corners go together?
How much sand?

http://www.flickr.com/photos/davidstanleytravel/5282834545/

Each simple feature

a
pile of

complexity

5

it’s amazing to watch.
There’s a special kind of unbreakable thread that connects a simple feature to a load of complexity.

http://www.flickr.com/photos/davidstanleytravel/5282834545/
http://www.flickr.com/photos/davidstanleytravel/5282834545/

http://www.flickr.com/photos/davidstanleytravel/5282834545/

Each simple feature

1,750 lbs

6

and my simple sandbox required almost 2K lbs of sand

http://www.flickr.com/photos/davidstanleytravel/5282834545/
http://www.flickr.com/photos/davidstanleytravel/5282834545/

The Pooler Story

Seth Falcon
Development Lead

Opscode
@sfalcon

7

So this is the story of building a SIMPLE connection pool.
and how quickly it become not simple.

http://www.flickr.com/photos/digitalrob70/6981414442/

A secret
uncovered

8

But it’s also the story of uncovering a secret of building robust systems with OTP.

http://www.flickr.com/photos/digitalrob70/6981414442/
http://www.flickr.com/photos/digitalrob70/6981414442/

Supervisor
Driven
Design

9

Think about the supervision tree as a principal aspect
Understand new projects by visualizing the supervision tree.

10

You start, if you haven’t already, by reading these.
When you are learning, you can’t focus on supervisors first.
You need to build an app

http://www.flickr.com/photos/whatcounts/521758821/sizes/o/in/photostream/

Supervisors
Supervisors
Supervisors

11

You aren’t using enough supervisors
You aren’t using them as effectively as you can

http://www.flickr.com/photos/whatcounts/521758821/sizes/o/in/photostream/
http://www.flickr.com/photos/whatcounts/521758821/sizes/o/in/photostream/

I expect to learn
something

12

Going to share some discoveries (not my inventions) of what I think are good practices
Hoping that it isn’t: you can do all of that with gproc and 3 lines of code

2010

We need an exclusive
access connection pool

13

Once upon a time, it was September 2010. Experimenting with Riak.
Pool Riak pb client connections and act as cheap load balancer

Maintain a pool of members
Track in use vs free members

14

Simple. Right? And Erlang gives you all the primitives.

Maintain a pool of members
Track in use vs free members
Consumer crashes, recover member
Member crash, replace member
Multiple pools
Load balancing across pools

15

But there are a few more features we’ll need

Start members asynchronously
 and in parallel
Start timeout?
Initial pool size vs max
Cull unused members after timeout
When to add members?

16

and yet a few more. Not as simple.

pooler is a gen_server;
calls PoolMember:start_link

pooler_sup

pooler

Version 0

17

Version 0 is here for illustrating the evolution. Simplest possible thing.
members are unsupervised.

18

Here’s the basic message flow for using pooler

http://www.flickr.com/photos/tdd/2696766506/sizes/l/in/photostream/

pooler_sup

pooler

19

Unsupervised children is sad panda.

http://www.flickr.com/photos/tdd/2696766506/sizes/l/in/photostream/
http://www.flickr.com/photos/tdd/2696766506/sizes/l/in/photostream/

No unsupervised processes

(Rule 1)

20

Know your processes:
 where they are;
 where they’re from
Hot code upgrade
Keep process spawning explicit

21

When everybody is supervised, you can easily find a process and know where it is from.

Know your processes:
 where they are;
 where they’re from
Hot code upgrade
Keep process spawning explicit

The squid will come after you

22

easier to track down process leaks (which could, over time starve vm of ram)

Rule 1 satisfied.

Version 1

pooler_sup

pooler member_sup

23

member_sup supervises members as simple_one_for_one

-module(member_sup).
-behaviour(supervisor).
-export([start_link/1, init/1]).

init({Mod, Fun, Args}) ->
 Worker = {Mod, {Mod, Fun, Args},
 temporary, brutal_kill,
 worker, [Mod]},
 Specs = [Worker],
 Restart = {simple_one_for_one, 1, 1},
 {ok, {Restart, Specs}}.

member_sup supervises pool members
pooler_sup

pooler member_sup

24

member_sup embeds MFA for member at init, so for pooling different types of members, need another member_sup

supervisor:start_child(member_sup, [])

pooler starts members with start_child

pooler_sup

pooler member_sup

25

Here’s how the pooler gen_server starts pool members.

-module(pooler_sup).
-behaviour(supervisor).

init([]) ->
 Config = application:get_all_env(pooler),
 Pooler = {pooler, ...},
 MemberSup = {member_sup,
 {member_sup, start_link, [Config]},
 permanent, 5000, supervisor,
 [member_sup]},
 Specs = [Pooler, MemberSup]
 {ok, {{one_for_one, 5, 10}, Specs}}.

static child spec starts worker_sup
pooler_sup

pooler member_sup

26

And finally, how the member_sup is wired into the top-level supervisor in pooler

spawn
start_link

supervisor:start_child

supervisor
+

simple_one_for_one
worker

No unsupervised processes

27

Look for instances of spawn and start_link. Add aa simple_one_for_one supervisor and replace the spawn/start_link calls with
supervisor:start_child calls.

Rule 1 satisfied.

Version 1

But no multiple pools.

pooler_sup

pooler member_sup

28

The member_sup carries the MFA to start a member of a given type
Want each pool to have a member_sup.

Create supervisors
dynamically

29

simple_one_for_one and
supervisor:start_link can be
used for supervisors too.

pooler_sup

pooler

member_sup_1 member_sup_2

pool_sup

30

Probably not news to you. But very useful.

31

Here’s the message flow for pooler adding a new pool and then adding a new member to the new pool.

Rule 1 satisfied.
Multiple pools!

Version 2

pooler_sup

pooler

member_sup_1 member_sup_2

pool_sup

32

multiple pools
all supervised
init_count, max_count
cull_interval, max_age

33

This is the state of pooler 0.0.2.

http://www.flickr.com/photos/8927927@N02/6837374725/

34

time passes... dream sequence

http://www.flickr.com/photos/8927927@N02/6837374725/
http://www.flickr.com/photos/8927927@N02/6837374725/

Good News!

2012

35

Good News!

2012

Facebook is a customer

36

Bad News...

2012

They need the new stuff
next week

37

We were using poolboy, but saw lockup of pool under load. This was also found at basho and then fixed via QuickCheck.
Bug related to queueing when full, different feature/complexity trade-off. pooler just returns an error when full. No queue.
With pooler, no hang under load. But..

Start Up Problems

38

pooler doesn’t know about it’s members. But needs member’s apps to start before it.
And wanted to keep pool config as static.

pooler has no deps.
pooler calls emysql:start_link.

Who calls
application:start(emysql)?

39

a problem caused by trying to keep things simple and only use static pool config

included_applications

40

L: two separate apps
R: one app includes another

in your app:

41

To use pooler as an included app, do this

-module(your_app_sup).
-behaviour(supervisor).

init([]) ->
 Pooler = {pooler_sup,...},
 Worker = {your_worker,...},
 Restart = {one_for_one, 1, 1},

 {ok, {Restart, [Pooler, Worker]}}.

in your app:

42

and then start pooler’s top-level supervisor somewhere in your supervision tree.

in pooler:

take care with
application:get_env

43

application_get_env/1 infers the application which will change if used in included_application context.
application_get_env/2 is unambiguous so you know where code will look for config.
config should be name spaced so /2 is better all around.
(20 min mark)

http://www.flickr.com/photos/3059349393/3709115244/sizes/l/in/photostream/

Under Load

44

http://www.flickr.com/photos/3059349393/3709115244/sizes/l/in/photostream/
http://www.flickr.com/photos/3059349393/3709115244/sizes/l/in/photostream/

http://www.flickr.com/photos/3059349393/3709115244/sizes/l/in/photostream/

Two things

45

Two small lessons learned when testing pooler embedded in a system put under load

http://www.flickr.com/photos/3059349393/3709115244/sizes/l/in/photostream/
http://www.flickr.com/photos/3059349393/3709115244/sizes/l/in/photostream/

Cast is crazy, so call me
(maybe)

46

return_member was a cast. Chosen as an optimization. Can end up overwhelming pooler’s mailbox.

When in doubt, call

Back pressure avoids
overwhelming mailbox

47

Don’t optimize with cast without measuring.
If you know deadlock isn’t a concern, try call first
If call isn’t fast enough, consider redesign, not cast

Mind your timeouts

48

Don’t fear ∞
gen_server:call(?SERVER, take_member, infinity)

49

Members started
in-line with pooler

server loop

Slow member start
triggers timeout

50

Under extreme load and certain error conditions within the system (not pooler in isolation) default timeouts for gen_server:call
result in falling off a cliff of failure.

call +∞
Run slower
Degrade with load
But still run

51

Changing to call with infinity gives (somewhat) more graceful degradation under failure and avoids some death spiral scenarios.

http://www.flickr.com/photos/yourbartender/5379244544/sizes/l/in/photostream/

52

Time to ride off into the sunset?

http://www.flickr.com/photos/yourbartender/5379244544/sizes/l/in/photostream/
http://www.flickr.com/photos/yourbartender/5379244544/sizes/l/in/photostream/

http://www.flickr.com/photos/yourbartender/5379244544/sizes/l/in/photostream/

2013

In production at
Opscode

53

pooler used in production to pool postgres db connections in Opscode Private, Hosted, and Open Source Chef Servers.

http://www.flickr.com/photos/yourbartender/5379244544/sizes/l/in/photostream/
http://www.flickr.com/photos/yourbartender/5379244544/sizes/l/in/photostream/

http://www.flickr.com/photos/yourbartender/5379244544/sizes/l/in/photostream/

2013

In production at
Opscode

Load tested at Facebook

54

http://www.flickr.com/photos/yourbartender/5379244544/sizes/l/in/photostream/
http://www.flickr.com/photos/yourbartender/5379244544/sizes/l/in/photostream/

http://www.flickr.com/photos/yourbartender/5379244544/sizes/l/in/photostream/

We’re not done

55

http://www.flickr.com/photos/yourbartender/5379244544/sizes/l/in/photostream/
http://www.flickr.com/photos/yourbartender/5379244544/sizes/l/in/photostream/

Single gen_server
serving all pools

56

Doesn’t fit our our evolved use cases. Want to pool different things pg and redis. Want isolation.

Can’t dynamically add
pools

57

When pooling different things, adding pools at run time makes sense. Also solves the startup ordering problem.
pooler should be more of a generic service. runs in the background.

In-line synchronous
member start

58

want improved dynamic pool growth -- add a batch, not just one
minimize impact on perf for slow starting members and member crashes

1. True multi pool
2. Async + parallel

member start

TODO

59

?

60

What should the supervision tree look like?

61

Create supervisors dynamically
(take 2)

62

We did this already where we used a simple_one_for_one pattern to start new supervisors.

Create child spec dynamically
Call supervisor:start_link
(not simple_one_for_one)

63

pool_sup_name(Name) ->
 list_to_atom("pooler_" ++
 atom_to_list(Name) ++
 "_pool_sup").

pool_sup_name(pool1)
pool_sup_name(pool2)

64

new_pool(Config) ->
 NewPool = pooler_config:list_to_pool(Config),
 Spec = pool_sup_spec(NewPool),
 supervisor:start_child(?MODULE, Spec).

pool_sup_spec(#pool{name = Name} = Pool) ->
 SupName = pool_sup_name(Name),
 {SupName, MFA, ...}.

65

TODO

✔ 1. True multi pool
2. Async + parallel

member start

66

supervisor:start_child(PoolSup, [])
(blocks until child ready)

Need Another Process
(it better be supervised)

async start

67

68

Basic flow for async member start using a starter gen_server

69

Actual async member start uses starter_sup and a single use starter gen_server which triggers member start by setting timeout
value to 0 in return from init/1. After creating member and sending msg to appropriate pool, starter exits normally.

70

Another view of the async member start flow

async + parallel start
(once running)

but at init time,
we want N

71

good for adding capacity dynamically.
does not help at pool initialization time

do_start_members_sync(Pool, Count) ->
 Parent = self(),
 Pids = [launch_starter(Parent, Pool)
 || _I <- lists:seq(1, Count)],
 gather_pids(StarterPids, []).

launch_starter(Parent, Pool) ->
 Fun = ...,
 proc_lib:spawn_link(Fun).

72

do_start_members_sync(Pool, Count) ->
 Parent = self(),
 Pids = [launch_starter(Parent, Pool)
 || _I <- lists:seq(1, Count)],
 gather_pids(StarterPids, []).

launch_starter(Parent, Pool) ->
 Fun = ...,
 proc_lib:spawn_link(Fun).

Think of the children!

73

Adding async + parallel member start should be easy. This is Erlang after all.

http://www.flickr.com/photos/digitalcolony/5179482430/sizes/l/in/photostream/

74

http://www.flickr.com/photos/digitalcolony/5179482430/sizes/l/in/photostream/
http://www.flickr.com/photos/digitalcolony/5179482430/sizes/l/in/photostream/

Come on,
just this one time during

init.

75

http://www.flickr.com/photos/williamsdb/5613957765/sizes/l/in/photostream/

76

http://www.flickr.com/photos/williamsdb/5613957765/sizes/l/in/photostream/
http://www.flickr.com/photos/williamsdb/5613957765/sizes/l/in/photostream/

77

78

in init
nobody knows your name

79

send raw messages in init!

80

TODO

✔ 1. True multi pool
2. Async + parallel

member start
✔

81

true multi pool
all supervised
dynamic pool size
 add batches
 start timeout
dynamic pool creation

82

New version now on master. Still a few finishing touches to make some of the dynamic and async features tunable (start timeout,
e.g.)
Not tagged yet for release, but expected in next couple of weeks.

Take Away

• Supervisor Driven Design

• No unsupervised processes

• Create supervisors on the fly

• zero timeout in init trick

• raw send/receive in init

http://www.flickr.com/photos/joeshlabotnik/321872649/sizes/z/in/photostream/

83

http://www.flickr.com/photos/joeshlabotnik/321872649/sizes/z/in/photostream/
http://www.flickr.com/photos/joeshlabotnik/321872649/sizes/z/in/photostream/

Thank You.

https://github.com/seth/pooler

@sfalcon
84

https://github.com/seth/pooler
https://github.com/seth/pooler

