
More than a century
of programming

Joe Armstrong
Robert Virding
Mike Williams

1

Monday, June 17, 2013



mike

2

Monday, June 17, 2013



History (early 1980's)

n Ericsson's “best seller” was 
AXE telephone exchanges 
(switches).

n Required large effort to develop 
and maintain software.

n The “job” was to make 
programming these types of 
application easier, but keeping 
the same characteristics

AXE Exchange, 1985
Guangzhou,China

mike

3

Monday, June 17, 2013



AXE SW Characteristics

● Massive concurrency (thousands of 
transactions)

● Array bounds and pointer  checking in 
hardware

– No wild pointers
– Size changes of statically allocated arrays
– Re-arrange memory

● Change code at runtime
● Modular
● Error handling and transactions

R
eference M

em
ory

R
eference M

em
ory

M
ain m

em
ory

Special 
purpose 

CPU

M
ain m

em
ory

Special 
purpose 

CPU

Special purpose synchronously 
duplicated AXE hardware

mike

4

Monday, June 17, 2013



Do the same as AXE, but use

● Conventional processors, easy portability to 
new processors

● Conventional operating system (type UNIX)
● Distributed multi-processor system enabling 

scalability (more processing power == more 
processors)

And
● Make software development effort 

significantly easier.

mike

5

Monday, June 17, 2013



How hardware changes 
how we think

n Large memory/small memory
n Always on line
n Fast CPU
n Parallel hardware
n Mobility

joe

6

Monday, June 17, 2013



If the hardware doesn’t 
change the software 

won’t change

joe

7

Monday, June 17, 2013



Hardware didn’t change
much in 1986-2004 so 

the software didn’t 
change much

apart from clock speed and memory capacity
still Von-Neumann non-distributed non-
connected 

joe

8

Monday, June 17, 2013



1980 - 1984
n The state of computer science

n  3 MHz clock

n 80 MB  disks

n 4MB  memory ...

n (language reflect the hardware of the time when 
they were developed)

joe

9

Monday, June 17, 2013



Problem Domain
1.  Actions must be performed at a certain point in time or within a certain 

time.
2.  System may be distributed over several computers.
3.The system is used to control hardware.
4.The software system is very large.
5.The system exhibits complex functionality such as feature interaction.
6.The systems should be in continuous operation over many years.
7.Software maintenance (reconfiguration etc.) should be performed 

without stopping the system.
8.There are stringent quality, and reliability requirements.
9.  Fault tolerance both to hardware failures, and software errors, must 

be provided.
10. The system must be able to handle very large numbers of concurrent 

activities.

Bjarne Däcker. November 2000 – Licentiate thesis

joe

Not Just Telecom

10

Monday, June 17, 2013



Reality check joe

11

Monday, June 17, 2013



MD110

“Hardware is funny” - RV

joe

“It’s the hardware stupid”

12

Monday, June 17, 2013



Erlang version 0
joe

13

Monday, June 17, 2013



joe

14

Monday, June 17, 2013



Fish bone diagrams
joe

15

Monday, June 17, 2013



joe

16

Monday, June 17, 2013



Today
uni() ->
 receive
   n -> 
     term(),exit();
   h -> 
     case new_call() of
        connected ->
           multi();
        n ->
           case gone_away() of
              yes -> exit();
              n   -> conv(), uni()
           end;
        h ->
           conv(), uni()
     end
  end.

joe

17

Monday, June 17, 2013



1988 - 
Robert
Virding joins 
the team

4 days for a 
rewrite

Not so fast

joe

18

Monday, June 17, 2013



1988

n Let’s make a product

n Documentation ...

n Community ...

n Performance ...

n Courses ...

robert

19

Monday, June 17, 2013



Documentation

robert

20

Monday, June 17, 2013



robert

21

Monday, June 17, 2013



robert

22

Monday, June 17, 2013



Performance

robert

23

Monday, June 17, 2013



Why own VM?

n Performance

n Semantics (code change)/isolation/real-time GC

n How?

n byte code interpreter (inspiration P-code, 
WAM)

robert

24

Monday, June 17, 2013



robert

25

Monday, June 17, 2013



robert

26

Monday, June 17, 2013



35 ERPS

robert

n Experiments
n Parlog
n Strand
n ...
n Own VM
n Compiler and Emulator in Prolog

Improving Performance

“do it in C”

27

Monday, June 17, 2013



Mike Williams
reads Joe’s C
and declares it it be “the 
worse program ever 
written”

robert

28

Monday, June 17, 2013



● JAM = Joe's abstract machine
● Joe → Compiler (Prolog → Erlang)  + Architecture
● Mike → VM in “CV”
● I thought I really knew how to program “C” until I 

started to program the JAM
● VM

– Byte code instructions
– 32 bits:  8 bits tag, 24 bits data/pointer
– Each Erlang process has it’s own separate stack and 

heap
– Garbage collection per Erlang process

The JAM Erlang virtual machine
MIke

29

Monday, June 17, 2013



JAM
First version on a VAX 11/750

3 MHz clock, 8 MByte memory, about 300 Mbyte disk

Second version on SUN workstation
Motorola 68K processor 

Later Sparc

First use in product on “Mobility Server”
OS – VXWorks, processor 68 K

ETS (Erlang Term Storage) added later
Enabler for the Mnesia real time fault tolerant database.

Some Later products
Anx – ADSL DSLAM  

AXD 301 ATM Switch

SGSN MME (Data access for GSM GPRS, WCDMA and LTE)

mike

30

Monday, June 17, 2013



Other VMs

● VEE = Virding's Erlang Engine
● BEAM = Bogdan's (nowadays Björn's) Erlang 

abstract Machine
– BEAM has replaced JAM in all Ericsson products

mike

31

Monday, June 17, 2013



Fault and Failure Handling
● Fault = bug in code
● Failure = hardware breaks

● Concept:

– Faults cannot be handled in the same context (i.e. Erlang process) as they occur

– Failures cannot be handled in the same hardware which is broken

– Code which handles faults and failures must be as simple as possible.
● Error handling concepts inspired by the “C” wire in ancient relay based telephone 

exchanges

● Concept of linked process means that if one of them crashes (fault or failure) they 
all terminative

– Except super simple recovery processes which receive information about the 
fault/failure and take remedial action.

● Often used principle:

– Put steady state data in the Mnesia, let failing transactions crash, recovery 
processes  use data in Mnesia to restore stable state.

mike

32

Monday, June 17, 2013



Things you may not have thought 
about

● Dynamic typing 
– Makes tracing and debugging a lot easier as lot of symbolic information is 

retained
– Makes mashalling of data for inter-machine communication easy at runtime

● Being able to change code “on the fly” at runtime greatly speeds up 
the 
 code->test->debug->correct
cycle

● Distribution is transparent in nearly all the code!
● Selective message reception greatly simplifies state machine code
● You can implement synchronous interprocess communication on 

top of asynchronous communication, the the inverse is very much 
harder! 

mike

33

Monday, June 17, 2013



mike

34

Monday, June 17, 2013



robert
Rapid Prototyping c.1992

35

Monday, June 17, 2013



1992 - 1995 
nothing much 

happens ...

robert

36

Monday, June 17, 2013



8 Dec 1995
 AXE-N Cancelled ...

robert

37

Monday, June 17, 2013



robert

38

Monday, June 17, 2013



1996 
AXD 301 starts

Lot’s of stuff happens quickly

robert

39

Monday, June 17, 2013



1996 - 1998 
nothing much 

happens ...

robert

40

Monday, June 17, 2013



1998
AXD 301 is a great 

success ...

robert

Still in use today in BT network

41

Monday, June 17, 2013



robert

42

Monday, June 17, 2013



joe

43

Monday, June 17, 2013



1998 Stuff Happens

n Lot’s of stuff happens quickly

n Erlang becomes Open Source ...

n Four days later ... Bluetail AB ...

joe

44

Monday, June 17, 2013



10 years later...

joe

45

Monday, June 17, 2013



joe

46

Monday, June 17, 2013



joe

47

Monday, June 17, 2013



Lab

Bluetail

Tail-F Klarna

Erlang 
solutions

Basho 

Trifork 

Erlang DNA
joe

And loads more that we don’t know 
about ... (ask Francesco)

48

Monday, June 17, 2013



The Future

joe

49

Monday, June 17, 2013



 

joe

50

Monday, June 17, 2013



joe

source: www.singularity.com

51

Monday, June 17, 2013



What happened?
‣ 1879 - Frege
‣ 1930 - Curry
‣ 1958 - LISP
‣ 1969 - agents/actors/smalltalk
‣ 1972 -  Prolog
‣ 1978 - CSP
‣ 1983 - Occam (+hardware)
‣ 1986 - Parlog/Strand
‣ 1986  - Erlang 
‣ 2011 - Elixir

‣1879 - 0 Hz - 0 MB
‣1958 - ...
‣1980’s TCP/Internet
‣1986 - 1.6 Mhz
‣2000 - 1GHz clocks
‣2000 - Always connected
‣2000 - Mobile revolution
‣2004 - GPRS/3G/WCDMA
‣2004 - multi cores /GB Ram/
‣2010 - 4G (LTE)/TB disk
‣2020 - Peta bytes?/K Cores

Software Hardware - sort

A heck of a lot of 
hardware stuff 
has happened in 
the last 10 years

joe

52

Monday, June 17, 2013



mike

53

Monday, June 17, 2013



time to market

fault-tolerance

quality

efficiency

scalability

price latency

maintainability
functionality

memory usage

energy efficiency

multi-core

dynamic code change

C

No free
lunches

distribution

GC

concurrency

mike

54

Monday, June 17, 2013



time to market

fault-tolerance

quality

efficiency

scalability

price

latency

maintainability functionality

memory usage

energy efficiency

multi-core
dynamic code change

EVM

distribution

concurrency

mike

55

Monday, June 17, 2013



Languages on the EVM

 Erlang
 Prolog 
 LFE  
 LUA 
 Elixir

 Joxa (lisp)
 Reia

Robert

56

Monday, June 17, 2013



Elixir
joe

57

Monday, June 17, 2013



                   Erlang Elixir

Language discussion limited 
by geography (pre WWW)

 Closed source
 “Funny syntax”
 Started 1986
 Book1 1993
 Book2 2007 (21 years later)
 Not marketed

Language discussion 
 on WWW

 Open source
 “Ruby syntax”
 Started 2011
 Books1+2 2013 (2 years 

later)
 Marketed 

joe

58

Monday, June 17, 2013



Tomorrow
n 2020 - 1 Million cores

n 2020 - 1 TB flash in mobile / 1 GB/sec mobile  
PByte disks

n 2020 - 100 B connected devices / ubiquitous 
networking

joe

59

Monday, June 17, 2013



Todayn MME (=Mobile 
Management Entity 
(LTE/4G))

n SGSN (=Serving 
GPRS Support Node 
(GPRS = General 
Packet Radio 
Service, 3G))

n WhatsApp

joe

60

Monday, June 17, 2013



How will we program
all this new stuff?

Which X on the 
EVM?

61

Monday, June 17, 2013


