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History (early 1980's)

n Ericsson's “best seller” was 
AXE telephone exchanges 
(switches).

n Required large effort to develop 
and maintain software.

n The “job” was to make 
programming these types of 
application easier, but keeping 
the same characteristics

AXE Exchange, 1985
Guangzhou,China

mike
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AXE SW Characteristics

● Massive concurrency (thousands of 
transactions)

● Array bounds and pointer  checking in 
hardware

– No wild pointers
– Size changes of statically allocated arrays
– Re-arrange memory

● Change code at runtime
● Modular
● Error handling and transactions
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Do the same as AXE, but use

● Conventional processors, easy portability to 
new processors

● Conventional operating system (type UNIX)
● Distributed multi-processor system enabling 

scalability (more processing power == more 
processors)

And
● Make software development effort 

significantly easier.

mike
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How hardware changes 
how we think

n Large memory/small memory
n Always on line
n Fast CPU
n Parallel hardware
n Mobility

joe
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If the hardware doesn’t 
change the software 

won’t change

joe
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Hardware didn’t change
much in 1986-2004 so 

the software didn’t 
change much

apart from clock speed and memory capacity
still Von-Neumann non-distributed non-
connected 

joe
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1980 - 1984
n The state of computer science

n  3 MHz clock

n 80 MB  disks

n 4MB  memory ...

n (language reflect the hardware of the time when 
they were developed)

joe
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Problem Domain
1.  Actions must be performed at a certain point in time or within a certain 

time.
2.  System may be distributed over several computers.
3.The system is used to control hardware.
4.The software system is very large.
5.The system exhibits complex functionality such as feature interaction.
6.The systems should be in continuous operation over many years.
7.Software maintenance (reconfiguration etc.) should be performed 

without stopping the system.
8.There are stringent quality, and reliability requirements.
9.  Fault tolerance both to hardware failures, and software errors, must 

be provided.
10. The system must be able to handle very large numbers of concurrent 

activities.

Bjarne Däcker. November 2000 – Licentiate thesis

joe

Not Just Telecom
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Reality check joe
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MD110

“Hardware is funny” - RV

joe

“It’s the hardware stupid”
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Erlang version 0
joe
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Fish bone diagrams
joe
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Today
uni() ->
 receive
   n -> 
     term(),exit();
   h -> 
     case new_call() of
        connected ->
           multi();
        n ->
           case gone_away() of
              yes -> exit();
              n   -> conv(), uni()
           end;
        h ->
           conv(), uni()
     end
  end.

joe
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1988 - 
Robert
Virding joins 
the team

4 days for a 
rewrite

Not so fast

joe
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1988

n Let’s make a product

n Documentation ...

n Community ...

n Performance ...

n Courses ...

robert
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Documentation
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Performance

robert
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Why own VM?

n Performance

n Semantics (code change)/isolation/real-time GC

n How?

n byte code interpreter (inspiration P-code, 
WAM)

robert
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35 ERPS

robert

n Experiments
n Parlog
n Strand
n ...
n Own VM
n Compiler and Emulator in Prolog

Improving Performance

“do it in C”
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Mike Williams
reads Joe’s C
and declares it it be “the 
worse program ever 
written”

robert
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● JAM = Joe's abstract machine
● Joe → Compiler (Prolog → Erlang)  + Architecture
● Mike → VM in “CV”
● I thought I really knew how to program “C” until I 

started to program the JAM
● VM

– Byte code instructions
– 32 bits:  8 bits tag, 24 bits data/pointer
– Each Erlang process has it’s own separate stack and 

heap
– Garbage collection per Erlang process

The JAM Erlang virtual machine
MIke
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JAM
First version on a VAX 11/750

3 MHz clock, 8 MByte memory, about 300 Mbyte disk

Second version on SUN workstation
Motorola 68K processor 

Later Sparc

First use in product on “Mobility Server”
OS – VXWorks, processor 68 K

ETS (Erlang Term Storage) added later
Enabler for the Mnesia real time fault tolerant database.

Some Later products
Anx – ADSL DSLAM  

AXD 301 ATM Switch

SGSN MME (Data access for GSM GPRS, WCDMA and LTE)

mike
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Other VMs

● VEE = Virding's Erlang Engine
● BEAM = Bogdan's (nowadays Björn's) Erlang 

abstract Machine
– BEAM has replaced JAM in all Ericsson products

mike

31

Monday, June 17, 2013



Fault and Failure Handling
● Fault = bug in code
● Failure = hardware breaks

● Concept:

– Faults cannot be handled in the same context (i.e. Erlang process) as they occur

– Failures cannot be handled in the same hardware which is broken

– Code which handles faults and failures must be as simple as possible.
● Error handling concepts inspired by the “C” wire in ancient relay based telephone 

exchanges

● Concept of linked process means that if one of them crashes (fault or failure) they 
all terminative

– Except super simple recovery processes which receive information about the 
fault/failure and take remedial action.

● Often used principle:

– Put steady state data in the Mnesia, let failing transactions crash, recovery 
processes  use data in Mnesia to restore stable state.

mike
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Things you may not have thought 
about

● Dynamic typing 
– Makes tracing and debugging a lot easier as lot of symbolic information is 

retained
– Makes mashalling of data for inter-machine communication easy at runtime

● Being able to change code “on the fly” at runtime greatly speeds up 
the 
 code->test->debug->correct
cycle

● Distribution is transparent in nearly all the code!
● Selective message reception greatly simplifies state machine code
● You can implement synchronous interprocess communication on 

top of asynchronous communication, the the inverse is very much 
harder! 

mike
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robert
Rapid Prototyping c.1992
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1992 - 1995 
nothing much 

happens ...

robert
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8 Dec 1995
 AXE-N Cancelled ...

robert
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1996 
AXD 301 starts

Lot’s of stuff happens quickly

robert
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1996 - 1998 
nothing much 

happens ...
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1998
AXD 301 is a great 

success ...

robert

Still in use today in BT network
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1998 Stuff Happens

n Lot’s of stuff happens quickly

n Erlang becomes Open Source ...

n Four days later ... Bluetail AB ...

joe
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10 years later...

joe
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Lab

Bluetail

Tail-F Klarna

Erlang 
solutions

Basho 

Trifork 

Erlang DNA
joe

And loads more that we don’t know 
about ... (ask Francesco)
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The Future

joe
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source: www.singularity.com
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What happened?
‣ 1879 - Frege
‣ 1930 - Curry
‣ 1958 - LISP
‣ 1969 - agents/actors/smalltalk
‣ 1972 -  Prolog
‣ 1978 - CSP
‣ 1983 - Occam (+hardware)
‣ 1986 - Parlog/Strand
‣ 1986  - Erlang 
‣ 2011 - Elixir

‣1879 - 0 Hz - 0 MB
‣1958 - ...
‣1980’s TCP/Internet
‣1986 - 1.6 Mhz
‣2000 - 1GHz clocks
‣2000 - Always connected
‣2000 - Mobile revolution
‣2004 - GPRS/3G/WCDMA
‣2004 - multi cores /GB Ram/
‣2010 - 4G (LTE)/TB disk
‣2020 - Peta bytes?/K Cores

Software Hardware - sort

A heck of a lot of 
hardware stuff 
has happened in 
the last 10 years

joe
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time to market

fault-tolerance

quality

efficiency

scalability

price latency

maintainability
functionality

memory usage

energy efficiency

multi-core

dynamic code change

C

No free
lunches

distribution

GC

concurrency

mike
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time to market

fault-tolerance

quality

efficiency

scalability

price

latency

maintainability functionality

memory usage

energy efficiency

multi-core
dynamic code change

EVM

distribution

concurrency
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Languages on the EVM

 Erlang
 Prolog 
 LFE  
 LUA 
 Elixir

 Joxa (lisp)
 Reia

Robert
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Elixir
joe
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                   Erlang Elixir

Language discussion limited 
by geography (pre WWW)

 Closed source
 “Funny syntax”
 Started 1986
 Book1 1993
 Book2 2007 (21 years later)
 Not marketed

Language discussion 
 on WWW

 Open source
 “Ruby syntax”
 Started 2011
 Books1+2 2013 (2 years 

later)
 Marketed 

joe
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Tomorrow
n 2020 - 1 Million cores

n 2020 - 1 TB flash in mobile / 1 GB/sec mobile  
PByte disks

n 2020 - 100 B connected devices / ubiquitous 
networking

joe
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Todayn MME (=Mobile 
Management Entity 
(LTE/4G))

n SGSN (=Serving 
GPRS Support Node 
(GPRS = General 
Packet Radio 
Service, 3G))

n WhatsApp

joe
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How will we program
all this new stuff?

Which X on the 
EVM?
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