More than a century
of programming

Joe Armstrong

Robert Virding
Mike Williams

Monday, June 17, 2013

mike

e“‘ ‘lT' ,

Monday, June 17, 2013

mike

History (early 1980's)

~& Ericsson's “best seller’” was
AXE telephone exchanges
(switches).

~& Required large effort to develop
and maintain software.

AXE Exchange, 1985
Guangzhou,China

~+ The "job” was to make
programming these types of
application easier, but keeping
the same characteristics

Monday, June 17, 2013

AXE SW Characteristics -

- Massive concurrency (thousands of

- Change code at runtime

1 A4

transactions)
- Array bounds and pointer checking in
hardware
— No wild pointers g =
D
- Size changes of statically allocated arrays . @ 2
Special 2 E
- Re-arrange memory purpose ® =
CPU = 3
3 >
2

- Modular

- Error handling and transactions

Special purpose synchronously
duplicated AXE hardware

Monday, June 17, 2013

Do the same as AXE, but use

- Conventional processors, easy portability to

NEew processors

- Conventional operating system (type UNIX)
» Distributed multi-processor system enabling

scalability (more processing power == more
processors)

And

- Make software development effort

significantly easier.

mike

Monday, June 17, 2013

How hardware changes
how we think

Large memory/small memory
Always on line
Fast CPU

Parallel hardware

Mobility

¢ ¢ ¢ e ¢

Monday, June 17, 2013

[f the hardware doesn't
change the software
won't change

Hardware didn’t change

much 1m 1986-2004 so
the software didn’t

change much

apart from clock speed and memory capactty
still Von-Neumann non-distributed non-
connected

Joe

1980 - 1984

& The state of computer science

& 3 MHz clock
& 80 MB disks
& 4AMB memory ...

& (language reflect the hardware of the time when

they were developed)

Monday, June 17, 2013

Problem Domain 0

1. Actions must be performed at a certain point in time or within a certain
time.

2. System muay be distributed over several computers.
3.The sys&yzused to control hardware.
4. The software ng IS very large.
5. The system exhibits % functionality such as feature interaction.
6. The systems should be | us operation over many years.
/. Software maintenance (reconfiguratiog’etc.) should be performed
without stopping the system
/ ments.

8. There are stringent quality, and reliability r
9. Fault tolerance both to hardware failures, and %e errors, must

be provided. JQ
10. The system must be able to handle very large numbers%f concurrent
activities.

Bjarne Dacker. November 2000 — Licentiate thesis
10

Monday, June 17, 2013

KERSTIN ODLING d *H .
Ericsson Business Networks A!\ marketing Declarative” ide language “in bility” .f:lndlrde'
AN stribution kil 'S
7 bhnicue” L2) VEE andar

4 _Beam) >Hype > > [Hang 07 >
Prolog interproter | Multi- b EPCA>
‘D-\A-e €7 €€ €90 .90 OI 02 .02 .04 .0C .06 .97 .09

go"nl)n C'w gm‘p'b"'g : ,__M_Q_B__, _‘: EI'"z. -
“emall = AAN > Netsim > Consono _lsecrat
B8 Chj- Dotnar> ATM>*coerat
TOATD
Erlang Systen
Da 6 A rlang Systems) 0
Users /// 10 40 1000
Cupport 09 1,2 2 25 60
Ik

Monday, June 17, 2013

MDI110 =

“It the hardware stuptd”

“Hardware ts funny” - RV

W

Monday, June 17, 2013

Joe
Erlang version 0

unhmw anund svertedra

7> ey S
. R L
. . N La¥ e
v v .
. " / o ‘ ‘.-l‘ 5 ’ -
, -)

ok 7 ‘ Ay / ,')~

(rnrulcrbm .",

Yo
"""""

............

T

13

Monday, June 17, 2013

KERSTIN ODLING
Ericsson Business Networks AB

—‘ eh

\-lt\\“ } " ‘::p—._b (

\ s]
L Uaged -

T 0o0—Q@)
i

%’—J S L"‘h ([nod_}

] A y>—0)
r f\@ "—i '34 >n

1 catl b l.,\,f jl‘(-fon;\oc(:g\&)‘?ij
—— I Alers
SO ait]
> Sz |

“oel (L,-.l(net Pmud)J

[——xn S 2t l
:/-‘
” A e /: ™ l

P‘l s b.q’;

——

) ;_1,\ M\k 4 . .

nRw gl

14

Joe

Monday, June 17, 2013

Unt

po--
|

wadk

L

Fish bone diagrams

Unt - cadh Shoke Ona owa. Qthesr Tor bpar)

|

XD &rm }— ot |

N s i
————— ety

N e

2
|

3

E
g
f

2
s

15

Joe

Monday, June 17, 2013

Joe

function uni returns none.

1l # uni --->
case (wait, |
n => [term,exit],
h => [hold,
case(new call, [
connected => multi,
n => case(gone_ away, [
yes => exit,
no => [conv,uni]
i
h => [conv,uni]
> 1)

1) -

16

Monday, June 17, 2013

Today

uni() ->
receive
n ->
term() ,exit();
h ->
case new_call() of
connected ->
multi();
n ->
case gone_ away() of
yes -> exit();
n -> conv(), uni()
end;
h ->
conv(), uni()
end
end.

7

Joe

Monday, June 17, 2013

Joe
1988 -

Robert erlang.pl
/%
. - e * SHOME/erlang.pro
Vlrdmg joins : e
* Copyright (c) 1988 Ericsson Telecom
the team ;
* Author: Joe Armstrong
* Creation Date: 1988-03-24
* Purpose:
* main reduction engine
*
* Revision History:
4'd_ f * 88-03-24 Started work on multi processor version
ays 10or a 3 of erlang
: * 88-03-28 First version completed (Without timeouts)
rewrite - 7 88-03-29 Correct small errors
* 88-03-29 Changed ’receive’ to make it return the pair
* msqg (From, Mess)
* 88-03-29 Generate error message when out of goals
* i.e. program doesn’t end with terminate
* 88-03-29 added trace(on), trace(off) facilities
- * 88-03-29 Removed Var := {....} , this can be achieved
* with {..)
* 88-05-27 Changed name of file to erlang.pro
IQt“:SC)féSt * First major revision started - main changes
*

Complete change from process to channel

based communication

here we (virtually) throw away all the

old stuff and make a bloody great data base
above statements were incorrect much better
to the PROPER way of doing things

88-05-31
to
long live d
88-06-02 Reds on run([et5]) = 245
changing the representation to separate the
environment and the process - should improve things
It did reds = 283 - and the program is nicer!
88-06-08 All pipe stuff working (pipes.pro)
added code so that undefined functions can return
values

B D NGt B e b NN B e BX

18

Monday, June 17, 2013

1983

& Jet's make a product

&

Documentation ...
Community ...
Performance ...

Courses ...

19

robert

Monday, June 17, 2013

robert

Documentation

20

h
(Breset

reset_erlang
load(F)

load

load(?)
what_erlang
go
send(A,B,C)
send(A,B)

cq
wait_queue(N)
cf

eqns

eqn(N)
start(Mod,Goal)
top

q
open_dots(Node)
talk(N)
peep(M)
no_peep(M)
vsn(X)

erlang vsn 1.05

help

reset all queues

kill all erlang definitions

load erlang file <F>.erlang

load the same file as before

what is the current load file

list all loaded erlang files

reduce the main queue to zero

perform a send to the main queue
perform a send to the main queue

see queue - print main queue

print wait queue(N)

see frozen - print all frozen states

see all equations

see equation(N)

starts Goal in Mod

top loop run system

quit top loop

opens Node
N=1 verbose, =0 silent
set peeping point on M

unset peeping point on M
erlang vsn number is X

A

robert

Monday, June 17, 2013

robert

Performance

2]

robert

Why own VM?

& Performance
& Semantics (code change)/isolation/real-time GC
~* How?

& byte code interpreter (inspiration P-code,

WAM)

24

Monday, June 17, 2013

robert

W

Monday, June 17, 2013

robert

Speed
C / Native code
1 MErps e
Threaded code

A T R PR PR

100 KErps JAM
o
Strand
R

10 KErps
1 KErps Interpreters

100 Erps

1987 1988 1989 1990 1991 1992 1993

26

Monday, June 17, 2013

2 robert
Improving Performance

¢ Experiments
= Patloo
~& Strand

&

& Own VM

& Compiler and Emulator in Prolog

/ “dO lt ln C”

556 ERPS

A

Monday, June 17, 2013

robert

Mike Williams

reads Joe’s C

and declares 1t 1t be “the
worse program ever
written’

28

Monday, June 17, 2013

Mike

The JAM Erlang virtual machine

- JAM = Joe's abstract machine
- Joe —» Compiler (Prolog — Erlang) + Architecture
- Mike —» VM in “CV”

- | thought | really knew how to program “C” until |
started to program the JAM

- VM
- Byte code instructions

- 32 bits: 8 bits tag, 24 bits data/pointer

- Each Erlang process has it's own separate stack and
heap

— Garbage collection per Erlang process

Monday, June 17, 2013

JAM

First version on a VAX 11/750
3 MHz clock, 8 MByte memory, about 300 Mbyte disk
Second version on SUN workstation

Motorola 68K processor

Later Sparc
First use in product on “Mobility Server”

OS — VXWorks, processor 68 K
ETS (Erlang Term Storage) added later

Enabler for the Mnesia real time fault tolerant database.
Some Later products

Anx — ADSL DSLAM

AXD 301 ATM Switch
SGSN MME (Data access for GSM GPRS, WCDMA and LTE)

30

Monday, June 17, 2013

mifke

Other VMs

- VEE = Virding's Erlang Engine

- BEAM = Bogdan's (nowadays Bjorn's) Erlang
abstract Machine

- BEAM has replaced JAM in all Ericsson products

Sl

mike
Fault and Failure Handling

Fault = bug in code

Failure = hardware breaks

Concept:

- Faults cannot be handled in the same context (i.e. Erlang process) as they occur
- Failures cannot be handled in the same hardware which is broken

- Code which handles faults and failures must be as simple as possible.

Error handling concepts inspired by the “C” wire in ancient relay based telephone
exchanges

Concept of linked process means that if one of them crashes (fault or failure) they
all terminative

- Except super simple recovery processes which receive information about the
fault/failure and take remedial action.

Often used principle:

- Put steady state data in the Mnesia, let failing transactions crash, recovery
processes use data in Mnesia to restore stable state. 10

Monday, June 17, 2013

mike
Things you may not have thought
about

- Dynamic typing

- Makes tracing and debugging a lot easier as lot of symbolic information is
retained

- Makes mashalling of data for inter-machine communication easy at runtime

- Being able to change code “on the fly” at runtime greatly speeds up

the
code->test->debug->correct

cycle
- Distribution is transparent in nearly all the code!
- Selective message reception greatly simplifies state machine code

- You can implement synchronous interprocess communication on
top of asynchronous communication, the the inverse is very much
harder!

23

Monday, June 17, 2013

mifke

opennces” > cocrof & ' OPEN
» " i"’"ﬂﬁﬂﬂ ﬂ"@!t__ 5 _!-3' Uava);'.
- ; Ignoted - WAR (C++ Peace)
. . » "Functional” “hide 1 » “time to market”
mmng ‘Decl‘ rative” ' e language “int mpﬂ’abﬂ nyu fa:g"‘d‘:rgde'
“Distributio 1 Sj
Tt JAM < : Standard
2 __Boam) >ngo>§' Etlang 97>
} : Prolog intetproter I_Aum-2> z,[p(; A>
Dak %6 €7 -¥¢ €9 90 91 -op .93 94 05 .06 .97 .Og
e Y vl v : TN
5 . . Bollmora club Qornpthmg - MOE J Ebir £
Users e AN > Netsim > Concono socro!
ctuff’ >y ODenmark> ATM _socrol
> (Slab > ’ s
Erlang Qystormg>
e g 4 melve 1
Usors /// | 10 40 1000
Cupport 0,3 0.9 1,2 3 25 60

34

Monday, June 17, 2013

rober

Rapid Prototyping ¢.1992

>

N
b

e ¥ X
R e

Photo: Benigt Sond

35

Monday, June 17, 2013

1992 - 1995

nothing much

happens ...

robert

robert

8 Dec 1995
AXE-N Cancelled ...

g 4 L JAM s |
Technique ' Beam) >Hypo > > Erlang 07 >
Prolog interpreter Mutti-P>
Rgu; €6 €7 €€ €0 .90 .91 .92 .02 .04 .05 .(07 .0¢
Uss" [Bolmoraclb | Comething: [_woe | U
sore *emall %, a_~" > Netsim > Consa ‘socrol >
shuff”" 7 Ty 2Donmark> BTV coerat
T '
Da | X . f[rlanggqcu@
Usors /// 1 10 40 1000
Cupport 0,2 09 s 9 25 60

38

robert

Monday, June 17, 2013

robert

1996
AXD 301 starts

Lot’s of stutt happens quickly

55

1996 - 1998

nothing much

happens ...

robert

robert

1998
AXD 301 1s a great

SUCCESS ...

Still in use today in BT network

41

robert

“opennace” > coerol ~] ' OPEN
Y irritation threat ‘war (Java))

- WAR (C++ Peace)

. . » "Functional” *hide language” fime to market”
Mﬂg ‘D | men | . guage “int | abil "gu f::gld]:g
Distribution _Hﬁﬂ—ﬁr e)
AM < |
'Tedmique" J Mﬁ gtaﬂdaf

' _ Beam) nge>> Erlang Q7>
[___Prolog interpreter ulti- I PCA >

Dak €6 €7 €€ €0 .90 -9t .92 .0% .04 .0 06 .97 .O¢
Ages bV .} A

o [Eo0REE] (Comething L MOB | [Emm>
Usere Ldg B AN > Netsim > Concono | 7sgc!o_t
ctuff' e :g; . >Denmarkl’> ATM _secrel
b (Slab; ‘ 2 s
Erlang Sycten
be 2 4 RS
Usorc /// | 10 40 1000
Cupport 0,2 0.9 1,2 ? 25 60
42

Monday, June 17, 2013

Monday, June 17, 2013

Joe

1998 Stuft Happens

& Lot's of stutl happens quickly
~® Erlang becomes Open Source ...

& Four days later ... Bluetail AB ...

44

Joe

10 years later...

45

Q9327

:::::::

i
v,..'\'

Mastering

Erlang

Programming
Erlang

S

Building Web
Applications
w llh I‘erg,

TOTI5TRA Erlang For

Erlan Great Good!
N y

Rk~
"

v |

.}g

46

Learn You Some

trlang
wo OTP

IN ACTION

i

I’rokrmunm r

rlang

Erlang/OTP

lProgrommer en

Edong

Monday, June 17, 2013

Joe

B!

H

)\

L]
W AOL Q; QUVIQ (éﬁ] m ERICSSON

![J UX w CLOUDANT TheBoston Globe MNOIKKIA

NDATIOR Connecting People

O

lthUb codecentric) CoucHBase puoiark d'

8 c «@s.. PODIO oprscope
sLoom @ W klarna CloudBees COUNTX
PLATFORMS bQShO LLShift

FEUERLABS
1l heroku \/\/ @ rockspace
Chango 2600h: vmware' |
it s A Spawngrid
§2:3 ofiniate W WROG -yocalocity:

powering small business
@;Bﬁﬂ%gg & \\“/*L
= @ travelping
,'.'.»,”»” 3

47

Monday, June 17, 2013

Erlang DNA

And loads more that we don’t know
about ... (ask Francesco)

48

...........
—————
- ~

Erlang

solutions

-
.. —‘
.....

Monday, June 17, 2013

Joe

The Future

49

10,000 intel Xeon, 3.6 GHz __64-bit Intel x%?,'&‘s 3.6 GhHz

OOD |- v s s m e s s
a ’
£
5 Alpha 21064A, 0.3 GHz
> PowerPC 604, 0.1GHz
2‘ e Alpha 21064, 0.2 GHz o, -
: &
é 52%/yaar
= f
10r

-
..‘
Ld
a”
o”
L d

e?
L4
'l
-

....................

0 e — = s 4 A 3 1 o 'y b ¢ i
1876 1980 1982 1984 1986 1888 1890 1992 1994 1996 1988 2000 2004 2008
Figure 1.1 Growth in processor performance since the mid-1980s.
50

Monday, June 17, 2013

Bits per Dollar

(in year 2000 Dollars)

Random Access Memory

Bits per Dollar (1949-2004)
10°

—
o
1

—_—
=]
1 lll" 1 R Hiim

-

i
S,
(2]
NI NI BN

Vacuum Tube Discrete Transistor Integrated Circuit / Chip

1945 1950 1955 1960

Doubling time = 1.5 years

1965 1970 1975 1980 1985 1990 1995 2000 2005
Year

source: www.singularity.com

Sl

Monday, June 17, 2013

What h d? 2
at happened !

Software Hardware - sort

» 1879 - Frege

» 1930 - Curry ,

» 1958 - LISP ’:‘Sgg s

» 1969 - agents/actors/smalltalk 2 s

» 1972 - Prolog »1980's TCP/Internet
978 = CSP » 1986 - 1.6 Mhz

» 1983 - Occam (+hardware) »2000 - IGHz clocks

» 1986 - Parlog/Strand »2000 - Always connected

» 1986 - Erlang » 2000 - Mobile revolution

» 2011 - Elxar »2004 - GPRS/3G/WCDMA

» 2004 - multi cores /GB Ram/

A heck of a lot of »2010 - 4G (LTE)/TB disk

hardware stuft

has happened 1n

the last 10 years

e

»2020 - Peta bytes?/K Cores

Monday, June 17, 2013

mifke

53

Monday, June 17, 2013

C

No free
lunches

efficiency

fault-tolerance

dynamic code change

multi-core scalability
energy efficiency distribution
time to market memory usage

. quality
price latency

functionality

maintainability concurrency

54

mifke

Monday, June 17, 2013

EVM

scalability

fault-tolerance

quality
multi-core

dynamic code change

distribution time to market

price concurrency

energy efficiency efficiency

memory usage
latency

maintainability functionality

93

mifke

Monday, June 17, 2013

Robert

Languages on the EVM

> Erlang
> Prolog
> EREE
P2 EEEX
> Elixar
33 Joxa (lisp)
> Rela

56

The
Pragmatic
Hoganmm

N |
Bear o

Functional

|> Concurrent
|> Pragmatic
|> Fun

Dave Thomas

Foreword by
José Valim,
Creator of Elixir

edited by Lynn Beighley

Elhxar

Introducing Elixir

Simon St. Laurent and]. David Eisenberg

O'REILLY"

Beijing + Cambeidge - Famham « Kol « Sebastopol « Tokyo

57

Joe

Monday, June 17, 2013

Joe

Erlang Elixir
+®Language discussion limited *@-Language discussion
by geography (pre WWW) on WWW
é Closed source & Open source
..&- “Funny syntaX" ”&' “Ruby Syntax”
-2 Started 1986 -2 Started 2011
-2 Book1 1993 +® Books1+2 2013 (2 years

-2 Book2 2007 (21 years later) later)
+® Not marketed '@ Marketed

58

Monday, June 17, 2013

Joe
Tomorrow
& 2020 - 1 Million cores

& 92020 -1 TB flash in mobile / 1 GB/sec mobile
PByte disks

~& 2020 - 100 B connected devices / ubiquitous
networking

S5

Monday, June 17, 2013

-+ MME (=Mobile lo day =

Management Entity
(LTE/MA4G))

& SGSN (=Serving
GPRS Support Node
(GPRS = General
Packet Radio
Service, 3G))

& WhatsApp

60

Monday, June 17, 2013

How will we program
all this new stuft?

Which X on the
EVM?

