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History (early 1980's)

~& Ericsson's “best seller’” was
AXE telephone exchanges
(switches).

~& Required large effort to develop
and maintain software.

AXE Exchange, 1985
Guangzhou,China

~+ The "job” was to make
programming these types of
application easier, but keeping
the same characteristics
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AXE SW Characteristics -

- Massive concurrency (thousands of

- Change code at runtime

1 A4

transactions)
- Array bounds and pointer checking in
hardware
—  No wild pointers g =
D
- Size changes of statically allocated arrays . @ 2
Special 2 E
- Re-arrange memory purpose ® =
CPU = 3
3 >
2

- Modular

- Error handling and transactions

Special purpose synchronously
duplicated AXE hardware
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Do the same as AXE, but use

- Conventional processors, easy portability to

NEew processors

- Conventional operating system (type UNIX)
» Distributed multi-processor system enabling

scalability (more processing power == more
processors)

And

- Make software development effort

significantly easier.

mike
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How hardware changes
how we think

Large memory/small memory
Always on line
Fast CPU

Parallel hardware

Mobility

¢ ¢ ¢ e ¢
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[f the hardware doesn't
change the software
won't change




Hardware didn’t change

much 1m 1986-2004 so
the software didn’t

change much

apart from clock speed and memory capactty
still Von-Neumann non-distributed non-
connected




Joe

1980 - 1984

& The state of computer science

& 3 MHz clock
& 80 MB disks
& 4AMB memory ...

& (language reflect the hardware of the time when

they were developed)
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Problem Domain 0

1. Actions must be performed at a certain point in time or within a certain
time.

2. System muay be distributed over several computers.
3.The sys&yzused to control hardware.
4. The software ng IS very large.
5. The system exhibits % functionality such as feature interaction.
6. The systems should be | us operation over many years.
/. Software maintenance (reconfiguratiog’etc.) should be performed
without stopping the system
/ ments.

8. There are stringent quality, and reliability r
9. Fault tolerance both to hardware failures, and %e errors, must

be provided. JQ
10. The system must be able to handle very large numbers%f concurrent
activities.

Bjarne Dacker. November 2000 — Licentiate thesis
10
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MDI110 =

“It the hardware stuptd”

“Hardware ts funny” - RV

W
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Erlang version 0
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function uni returns none.

1l # uni --->
case (wait, |
n => [term,exit],
h => [hold,
case(new call, [
connected => multi,
n => case(gone_ away, [
yes => exit,
no => [conv,uni]
i
h => [conv,uni]
> 1)

1) -

16
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Today

uni() ->
receive
n ->
term() ,exit();
h ->
case new_call() of
connected ->
multi();
n ->
case gone_ away() of
yes -> exit();
n -> conv(), uni()
end;
h ->
conv(), uni()
end
end.

7

Joe
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1988 -

Robert erlang.pl
/%
. - e * SHOME/erlang.pro
Vlrdmg joins : e
* Copyright (c) 1988 Ericsson Telecom
the team ;
* Author: Joe Armstrong
* Creation Date: 1988-03-24
* Purpose:
* main reduction engine
*
* Revision History:
4'd_ f * 88-03-24 Started work on multi processor version
ays 10or a 3 of erlang
: * 88-03-28 First version completed (Without timeouts)
rewrite - 7 88-03-29 Correct small errors
* 88-03-29 Changed ’receive’ to make it return the pair
* msqg (From, Mess)
* 88-03-29 Generate error message when out of goals
* i.e. program doesn’t end with terminate
* 88-03-29 added trace(on), trace(off) facilities
- * 88-03-29 Removed Var := {....} , this can be achieved
* with {..)
* 88-05-27 Changed name of file to erlang.pro
IQt“:SC)féSt * First major revision started - main changes
*

Complete change from process to channel

based communication

here we (virtually) throw away all the

old stuff and make a bloody great data base
above statements were incorrect much better
to the PROPER way of doing things

88-05-31
to
long live d
88-06-02 Reds on run([et5]) = 245
changing the representation to separate the
environment and the process - should improve things
It did .... reds = 283 - and the program is nicer!
88-06-08 All pipe stuff working (pipes.pro)
added code so that undefined functions can return
values

B D NGt B e b NN B e BX

18
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1983

& Jet's make a product

&

Documentation ...
Community ...
Performance ...

Courses ...

19

robert

Monday, June 17, 2013



robert

Documentation

20




h
(Breset

reset_erlang
load(F)

load

load(?)
what_erlang
go
send(A,B,C)
send(A,B)

cq
wait_queue(N)
cf

eqns

eqn(N)
start(Mod,Goal)
top

q
open_dots(Node)
talk(N)
peep(M)
no_peep(M)
vsn(X)

erlang vsn 1.05

help

reset all queues

kill all erlang definitions

load erlang file <F>.erlang

load the same file as before

what is the current load file

list all loaded erlang files

reduce the main queue to zero

perform a send to the main queue
perform a send to the main queue

see queue - print main queue

print wait queue(N)

see frozen - print all frozen states

see all equations

see equation(N)

starts Goal in Mod

top loop run system

quit top loop

opens Node
N=1 verbose, =0 silent
set peeping point on M

unset peeping point on M
erlang vsn number is X

A

robert
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Performance
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Why own VM?

& Performance
& Semantics (code change)/isolation/real-time GC
~* How?

& byte code interpreter (inspiration P-code,

WAM)

24
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Speed
C / Native code
1 MErps e
Threaded code

A T R PR PR

100 KErps JAM
o
Strand
R

10 KErps
1 KErps Interpreters

100 Erps

1987 1988 1989 1990 1991 1992 1993

26
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2 robert
Improving Performance

¢ Experiments
= Patloo
~& Strand

&

& Own VM

& Compiler and Emulator in Prolog

/ “dO lt ln C”

556 ERPS

A
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Mike Williams

reads Joe’s C

and declares 1t 1t be “the
worse program ever
written’

28
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Mike

The JAM Erlang virtual machine

- JAM = Joe's abstract machine
- Joe —» Compiler (Prolog — Erlang) + Architecture
- Mike —» VM in “CV”

- | thought | really knew how to program “C” until |
started to program the JAM

- VM
- Byte code instructions

- 32 bits: 8 bits tag, 24 bits data/pointer

- Each Erlang process has it's own separate stack and
heap

— Garbage collection per Erlang process
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JAM

First version on a VAX 11/750
3 MHz clock, 8 MByte memory, about 300 Mbyte disk
Second version on SUN workstation

Motorola 68K processor

Later Sparc
First use in product on “Mobility Server”

OS — VXWorks, processor 68 K
ETS (Erlang Term Storage) added later

Enabler for the Mnesia real time fault tolerant database.
Some Later products

Anx — ADSL DSLAM

AXD 301 ATM Switch
SGSN MME (Data access for GSM GPRS, WCDMA and LTE)

30
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Other VMs

- VEE = Virding's Erlang Engine

- BEAM = Bogdan's (nowadays Bjorn's) Erlang
abstract Machine

- BEAM has replaced JAM in all Ericsson products

Sl
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Fault and Failure Handling

Fault = bug in code

Failure = hardware breaks

Concept:

- Faults cannot be handled in the same context (i.e. Erlang process) as they occur
- Failures cannot be handled in the same hardware which is broken

- Code which handles faults and failures must be as simple as possible.

Error handling concepts inspired by the “C” wire in ancient relay based telephone
exchanges

Concept of linked process means that if one of them crashes (fault or failure) they
all terminative

- Except super simple recovery processes which receive information about the
fault/failure and take remedial action.

Often used principle:

- Put steady state data in the Mnesia, let failing transactions crash, recovery
processes use data in Mnesia to restore stable state. 10
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mike
Things you may not have thought
about

- Dynamic typing

- Makes tracing and debugging a lot easier as lot of symbolic information is
retained

- Makes mashalling of data for inter-machine communication easy at runtime

- Being able to change code “on the fly” at runtime greatly speeds up

the
code->test->debug->correct

cycle
- Distribution is transparent in nearly all the code!
- Selective message reception greatly simplifies state machine code

- You can implement synchronous interprocess communication on
top of asynchronous communication, the the inverse is very much
harder!

23
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Rapid Prototyping ¢.1992
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Photo: Benigt Sond
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1992 - 1995

nothing much

happens ...

robert
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8 Dec 1995
AXE-N Cancelled ...
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1996
AXD 301 starts

Lot’s of stutt happens quickly

55




1996 - 1998

nothing much

happens ...

robert
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1998
AXD 301 1s a great

SUCCESS ...

Still in use today in BT network

41
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1998 Stuft Happens

& Lot's of stutl happens quickly
~® Erlang becomes Open Source ...

& Four days later ... Bluetail AB ...

44
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10 years later...
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Erlang DNA

And loads more that we don’t know
about ... (ask Francesco)

48
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The Future

49
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Bits per Dollar

(in year 2000 Dollars)

Random Access Memory

Bits per Dollar (1949-2004)
10°

—
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i
S,
(2]
NI NI BN

Vacuum Tube Discrete Transistor Integrated Circuit / Chip

1945 1950 1955 1960

Doubling time = 1.5 years

1965 1970 1975 1980 1985 1990 1995 2000 2005
Year

source: www.singularity.com
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What h d? 2
at happened !

Software Hardware - sort

» 1879 - Frege

» 1930 - Curry ,

» 1958 - LISP ’:‘Sgg s

» 1969 - agents/actors/smalltalk 2 s

» 1972 - Prolog »1980's TCP/Internet
978 = CSP » 1986 - 1.6 Mhz

» 1983 - Occam (+hardware)  »2000 - IGHz clocks

» 1986 - Parlog/Strand »2000 - Always connected

» 1986 - Erlang » 2000 - Mobile revolution

» 2011 - Elxar »2004 - GPRS/3G/WCDMA

» 2004 - multi cores /GB Ram/

A heck of a lot of »2010 - 4G (LTE)/TB disk

hardware stuft

has happened 1n

the last 10 years

e

»2020 - Peta bytes?/K Cores
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C

No free
lunches

efficiency

fault-tolerance

dynamic code change

multi-core scalability
energy efficiency distribution
time to market memory usage

. quality
price latency

functionality

maintainability concurrency

54
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EVM

scalability

fault-tolerance

quality
multi-core

dynamic code change

distribution time to market

price concurrency

energy efficiency efficiency

memory usage
latency

maintainability functionality

93
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Robert

Languages on the EVM

> Erlang
> Prolog
> EREE
P2 EEEX
> Elixar
33 Joxa (lisp)
> Rela

56




The
Pragmatic
Hoganmm

N |
Bear o

Functional

|> Concurrent
|> Pragmatic
|> Fun

Dave Thomas

Foreword by
José Valim,
Creator of Elixir

edited by Lynn Beighley

Elhxar

Introducing Elixir

Simon St. Laurent and ]. David Eisenberg

O'REILLY"

Beijing + Cambeidge - Famham « Kol « Sebastopol « Tokyo

57
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Erlang Elixir
+®Language discussion limited  *@-Language discussion
by geography (pre WWW) on WWW
é Closed source & Open source
..&- “Funny syntaX" ”&' “Ruby Syntax”
-2 Started 1986 -2 Started 2011
-2 Book1 1993 +® Books1+2 2013 (2 years

-2 Book2 2007 (21 years later) later)
+® Not marketed '@ Marketed

58
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Tomorrow
& 2020 - 1 Million cores

& 92020 -1 TB flash in mobile / 1 GB/sec mobile
PByte disks

~& 2020 - 100 B connected devices / ubiquitous
networking

S5
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-+ MME (=Mobile lo day =

Management Entity
(LTE/MA4G))

& SGSN (=Serving
GPRS Support Node
(GPRS = General
Packet Radio
Service, 3G))

& WhatsApp

60
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How will we program
all this new stuft?

Which X on the
EVM?




