
Continuous Migration

Reimplementing the 
Purchase Taking Capabilities of a 

24/7 Financial System

@dklee #EUC2013
Klarna Engineering



About @dklee

 

Past Life: type-theory researcher

Core Code Grunt at Klarna since 2011

Currently Real-Time Core: Platform

Hobby: cooking big pieces of meat



Klarna

 

Online Payments provider since 2004

Goal: increase merchant conversions 
through simpler paying experience

Invoicing: Klarna takes credit risk

Services merchants in Sweden, Norway, 
Finland, Denmark, Germany, the 
Netherlands, and Austria



Klarna Engineering

 

Almost 200 engineers across Stockholm, 
Uppsala, and Tel Aviv

Stockholm Office:
one of the world's biggest Erlang shops

Pre: 2010 ~10 Erlang developers

Today: ~70 Erlang developers



SFSA Compliance

 

As an (almost) bank, Klarna is subject to 
financial regulations from Swedish 
Financial Supervisory Authority

All code changes must be documented in 
ticket system and reviewed

"Implicit" code changes highly 
undesirable, i.e. illegal



kred -- legacy system

 

Monolithic system serving almost all 
business functions (purchase taking, 
payments, collections, etc)

2011: all business-logic version 
controlled in single git repo

Multiple on-going projects to split out 
functionality into new services



FRED -- shiny new system

 

FRont-end krED

Termination point for estore APIs

Legacy XML-RPC API

Klarna Checkout

See Mats' Cronqvist's talk for 
architectural details



Legacy Business Logic

 

Klarna sells a service that merchants 
integrate against

Many special cases in code to please 
customers and make sales

Legacy business logic is rather profitable 
in the short-term

Removing old cruft is complicated and 
expensive



Linus Torvalds on Refactoring Legacy Code

"Why don't we write code that just works? Or 

absent a 'just works' set of patches, why 

don't we revert to code that has years of 

testing? This kind of 'I broke things, so now I 

will jiggle things randomly until they unbreak' 

is not acceptable. [...] Don't just make random 

changes. There really are only two acceptable 

models of development: 'think and analyze' or 

'years and years of testing on thousands of 

machines'. Those two really do work."

-- Linus Torvalds 

 



Shared Code

 

Migrations are dangerous

New system requires re-writing 
dependencies out of legacy code

Maintenance, minor feature additions, 
and bugfixes must still occur

copy-x-paste: BAD

cut-x-paste: not-so-BAD



Continuous Migration = Iterative Growth of New System

 

Small incremental changes, shipped 
regularly

Klarna's legacy system releases weekly

Re-organize legacy spaghetti
-> frameworks
-> shared libraries
-> system specific code
-> stubs



General Frameworks

 

Hollywood Model, code that calls you

behaviours to specify callback interface

Abstract common control flow patterns

Enforce separation of concerns

write-once, change rarely



Shared Libraries

 

system agnostic utility code (e.g. tulib)

shared business definitions (currency.git)

pure business libraries (pno.git)

shared callbacks to frameworks 
(rpc_api_fe.git)



System-Specific Code

 

un-refactored legacy code-base

database clients

logging and monitoring 

system-specific callback modules to 
frameworks



stubs

 

minimal implementations of un-ported 
dependencies

exploit Erlang's weak module system

present module with same name, with 
stubbed function implementations

new migration related technical debt

version-controlled TODO list



Ship of Theseus Refactoring

 

legacy code-base shrinks as shared code 
ecosystem grows

move logic from legacy code-base into a 
shared repository
-> ship result to both systems

maintenance in shared repository
-> ship result to both systems

two parallel versions of code :(
-> all maintenance must be done twice



Dependency Management

 

System repos must include shared code 
as dependencies

kred.git: lots of legacy code + lots of 
dependencies

fred.git: no business logic, just points to 
dependencies and config settings



kred: git submodules

dklee@gelth:~/git/klarna/dev(master)$ git diff
--- a/lib/pd
+++ b/lib/pd
@@ -1 +1 @@
-Subproject commit e6014914c1fe226f8c2a4b94f034d62897b10a0f
+Subproject commit 1bb77ce497847db15dbe56b04a7ff2fa9d196a03

For historical reasons, kred manages 
dependencies with git submodules

git submodules has a rather consistent 
semantics based on SHA-1 hashes of 
dependencies

git submodules entirely unintuitive if you 
expect to work with branches and tags



FRED: rebar dependencies

deps:
    ./rebar get-deps skip_deps=true

New systems use rebar.config for 
dependency management

Nested dependencies resolve non-
deterministically

fred.git: fully-flattened dependencies

Internal fork of rebar to ignore sub-
dependencies

Exposes need for really good package 
manager



tracking master always works screws you eventually

 

common practice: track github masters 
of dependencies

does not work for a financial company:
unreviewed code changes slip in

full of surprises:
build breaks with no code changes

does not work for reproducibility:
what were the masters of all my 
dependencies yesterday?



Semantic Versioning

http://www.semver.
org

MAJOR.MINOR.PATCH

 

major: breaks interface

minor: conservative extension

patch: FIX, no interface change



tagging conventions

 

be honest!

don't be afraid to bump minor or major!

semver bumps communicate important 
warnings to users

would be nice if rebar were more semver 
aware



Testing

 

rely on Jenkins jobs for master branches 
of major systems

test suites with both eunit and CT
-> common_eunit in use

some use of proper



svt

 

System Verification Tests

multi-system integration test

acceptance testing

multi-host configuration

goal: use cloudstack + vagrant + jenkins 
to spin up sets of VMs for regression 
runs



FRED Beta

 

FRED is in a live Beta for legacy XML-RPC 
API

currently servicing an identification call 
(get_addresses)

work ongoing for purchase creating calls 
(reserve_amount, add_invoice)



FRED DevOps

 

FRED is currently developer operated

mechanics in the helicopter

Configuration Management via Chef



Chef

 

FRED+riak servers, RabbitMQ servers 
managed via Chef

Chef also important in configuring test 
machines

Specialize to different scenarios via Chef 
attributes



ergonaut

 

JSON DSL for re-writing erlang config files

removes need for config template in Chef

Ruby Hash <-> JSON <-> erlang cfg diff

minimizes cookbook changes even 
though sys.config grows



Deployment

 

f5 BIG-IP load balancer to manage XML-
RPC traffic

FREDs are upgraded independently

FREDs are stateless and redundant:
chef-client restarts node

multiple releases a week



Frameworks ftw

 

We really like frameworks!

Important for code quality

Callback modules allow for dependency 
injection

Keep layers clean

Enforce separation of concerns



soapbox

 

open-sourced framework for RPC-style 
APIs

callback behaviours for input types and 
methods

separate callbacks for checking 
arguments and executing call



soapbox method routing

 

soapbox_method_router, select 
implementation based on input values

high degree of configurability without 
modifying existing method callbacks



FRED custom routing

 

allows us to control whether FRED or 
kred services API call using inputs to 
determine whether appropriate 
functionality is available

gradually service API call on FRED for 
more merchants as more corner-case 
features are ported over

sick (TM) use of parameterized modules 
to eliminate code duplication



lager_smtp_backend

 

smtp backend for lager

has a callback behaviour for specifying 
FROM, TO, Subject, Body based on log 
message

allows different users to format e-mails 
as desired without having to modify 
lager_smtp_backend code

descendent: lager_sms_backend



lager_rate_limiter_backend(lager_smtp_backend)

 

lager_rate_limiter_backend: generic rate 
limiting back-end that wraps any 
lager_backend

callback behaviour for how to react when 
rate-limiting kicks in
-> escalate to higher severity?
-> kill node?

used for both smtp and sms



lager_mq_backend + lawgalog

 

lager_mq_backend: sends lager_msg 
object over MQ

lawgalog: consumer that aggregates logs 
from multiple producers

lawgalog used to 
tail all FRED logs real-time
evaluate experimental lager backends, 
backends out of place on FRED

official log aggregation/indexing done via 
Splunk



FRED Developers, Past and Present

Thanks! Questions?


