
Profiling with Percept2

Huiqing Li and Simon Thompson
EUC 2013

Overview

•  Erlang multicore … RELEASE

•  Percept and Percept2

•  Case study with Wrangler

•  Conclusions

Erlang multicore

RELEASE
•  EU FP7 STREP research project
•  October 2011 – September 2013
•  Partners:

–  Heriot Watt University (UK)
–  Uppsala University (Sweden)
–  University of Kent (UK)
–  ICCS (Greece)
–  Ericsson AB (Sweden)
–  Erlang Solutions (UK/Sweden)
–  EDF (France)

RELEASE

•  Scalable distributed Erlang: system and tools.

•  Groups and implicit placement.

Tools

How to use
these systems
effectively?

Existing tools

•  Erlang tracing

•  dbg/etop/ttb

•  fprof/eprof/cprof

•  Percept

•  Dtrace

•  ...

Percept

Percept

•  Percept: Erlang concurrency profiling tool.

•  In the Erlang/OTP distribution ...

•  ... written by Björn-Egil Dahlberg.

•  Monitors process runnability using

erlang:trace/3, erlang:system_profile/2.

•  Offline tool ... ‘replay’ a computation.

Percept

•  Histogram of active processes vs. time.

•  ‘Drill down’ to process information via Pid.

•  Start/end time, parent/child processes, time spent

waiting for messages,

•  View individual process runnability.

Percept

Percept

Percept

Percept2

 Percept

Functionality enhancement:

•  Process run queue migration
•  Process communication
•  Scheduler information

•  Dynamic context-aware callgraph
•  Runnable vs. running

•  Process/function accumulated runtime
•  Support for distribution
•  ...

Usability and scalability:
•  Scalable process tree
•  Cache history webpages
•  Parallel processing

Percept2

•  How to use

-type profile_option()::procs | ports | schedulers
 |running| message| migration
 |all
 |{callgraph, [module_name()]}.

•  How to use
•  Profile a complete application run.
 percept2:profile(FileSpec, Entry, Options).

-type filespec()::file:filename()
 |{file:filename(),wrap,Suffix::string(),
 WrapSize::pos_integer(),
 WrapCnt::pos_integer()}.

Percept2

•  How to use
•  Profile while application is running.
 percept2:profile(FileSpec, Options).

 percept2:stop_profile().

 •  Profile a particular part of your application by
instrumenting your code with percept2:profile/2

and percept2:stop_profile/0 commands.

Percept2

•  How to analyze trace data
•  analyze a single trace file.
 percept2:analyze([FileName]).

•  analyze a colection of trace files in parallel.
 percept2:analyze(FileBaseName, Suffix,
 StartIndex, EndIndex).

•  How to visualize profiling data.
 percept2:start_webserver(8888).

 then go to localhost:8888 in your web browser.

Percept2: process runnability
The number of runnable processes at any time.

Percept2: scheduler info
The number of schedulers active at any time.

Percept2: process info tree
 Process info presented in expandable tree format.

Percept2: process info tree
 Process info presented in expandable tree format.

Percept2: process info
 Information about a particular process

Percept2: process communication
 Process info presented in expandable tree format.

Percept2: process communication
 Process tree in graph representation

Percept2: process communication
 Process info presented in expandable tree format.

Percept2: process communication

Percept2: process communication

Percept2: compare process runnability

Percept2: compare process runnability

Percept2: compare process runnability

Green: running; Orange: runnable but not running; White: blocked.

Percept2: compare process runnability
Heavily loaded processes/load imbalance

Very short-lived processes

Percept2: function profiling

•  Existing function profiling tools for Erlang:

Percept2

Percept2: function profiling

per process to
file but can be
selective

 yes only total yes yes Percept2 depends on

... Percept2 only profiles functions defined in the modules specified by user.

Percept2: function profiling

A process’ pid is hightlighted if it has a callgraph generated.

Percept2: function profiling

Percept2: function profiling

Percept2: function profiling

Accumulated time during which a function within this
process is in a running state.

Percept2: distribution

•  Parallelise Percept2 itself.

•  Multiple log files ...

•  ... that can be processed in parallel ...

•  ... and integrated into a single result.

Percept2: scalability

Scalability of Percept2 when analysing 5 trace files (total size: 1.36G,
 11,008,609 traces messages) in parallel.

Percept2: scalability

Percept2

More features are being added ...

Percept2: case study

Clone detection in Wrangler

parse
files

flatten
trees

identify
candidates

check
candidates

Percept2: case study

Percept2: case study

Percept2: case study

overloaded process

Percept2: case study
simplified callgraph of

 <0.37.0>

Percept2: case study

Refactoring #1: List comprehension to parallel map

% Before:
[generalise_and_hash_file_ast_1(
 File, Threshold,ASTPid,true,SearchPaths,TabWidth)
 ||File <- Files]

% Before:
para_lib:pmap(
 fun(File) -> generalise_and_hash_file_ast_1(
 File, Threshold, ASTPid,true,SearchPaths,TabWidth)
 end, Files)

Percept2: case study
simplified callgraph of

 <0.37.0>

Percept2: case study

Refac #2: sequential ‘foreach’ to parallel ‘foreach’

 lists:foreach(fun (Form)-> F(Form) end, Forms)

% Before:

para_lib:foreach(
 fun (Form)-> F(Form) end, Forms, ?Parallel)

Percept2: case study
simplified callgraph of

 <0.37.0>

Refac #3: recursive function to parallel ‘foreach’

Percept2: case study

Clone detection in Wrangler

parse
files

flatten
trees identify

candidates

check
candidates

parse
files
parse
files

flatten
trees
flatten
trees

check
candidates

check
candidates

Percept2: case study

Percept2: case study

Other ongoing work

•  Online visualisation. process migration and
run queue size

http://profsjt.blogspot.co.uk/2012/11/animating-multicore-erlang.html

Other ongoing work

•  Online visualisation. interaction between
Erlang nodes grouped
into s_groups.

Conclusions

•  RELEASE project

•  A tool for profiling concurrent/parallel Erlang

applications.

•  Thanks to the Percept team!

Percept2

git://github.com/huiqing/percept2.git

Get involved!

