
WebDriver:
Controlling your Web Browser

Erlang User Conference 2013
Hans Svensson, Quviq AB

hans.svensson@quviq.com

First, a confession...

I have a confession to make...

I have built a web system!

In PHP!

... and it was painfully mundane to test

It is all forgotten and forgiven... It was back in 2003!

First DEMO

DEMO

PhD

A bit of history

PhD
student

Proving
program

correctness
Erlang

Reality – a
constant issue

Testing is
necessary

PhD

A bit of history

PhD
student

Proving
program

correctness
Erlang

Reality – a
constant issue

Testing is
necessary

•  We like to write our properties in QuickCheck

•  How can we control ‘a browser’ from Erlang?

•  Doing it all from scratch seems hard, unnecessary,

stupid, ...

Selenium

“Selenium automates browsers. That's it. What you do
with that power is entirely up to you. Primarily it is for
automating web applications for testing purposes, but is
certainly not limited to just that. Boring web-based
administration tasks can (and should!) also be automated as
well.”

Selenium

•  Basically you can create and run scripts
•  Supported by a wide range of browsers and operating

systems
•  Run tests in: Chrome, IE, Opera, Firefox, and partial support

also for other browsers.
•  Runs on: Windows, OS X, Linux, Solaris, and others.
•  Script recording using Selenium IDE (Firefox plugin).

•  Language support for: C#, Java, Python, Ruby, and
partial support for Perl and PHP.

•  Widely used to create Unit-tests and regression testing
suites for web services.

Selenium 2 - WebDriver

•  In version 2, Selenium introduced the WebDriver API
•  Via WebDriver it is possible to drive the browser natively
•  The browser can be local or remote – possible to use a

grid test
•  It is a compact Object Oriented API

•  Supports Chrome, Firefox, HtmlUnit, Opera, IE, and
IPhone and Android

•  Languages implementing driver: C#, Java, Python, and
Ruby.

WebDriver Wire Protocol

•  What if your preferred language is not in the list?
•  All WebDriver drivers communicates via HTTP using the

WebDriver Wire Protocol
•  It is a RESTful web service using JSON over HTTP

•  The Wire Protocol consists of ~80 different commands
controlling different aspects such as:
–  Windows/Tabs – open, close, resize, set_position, maximize, ...
–  Page elements – find, find relative, click, send_keys, submit, ...
–  Navigation – back, forward, refresh, set_url, ...
–  Timeouts – script timeout, page load timeout, ...
–  Cookies – set, get, delete, ...

WebDriver in Erlang

•  Implementation consists of
–  webdrv_cap – handle web browser capabilities
–  webdrv_wire – purely functional implementation of the

wire protocol
–  webdrv_session – wrapper module for WebDriver

sessions
–  json – JSON library, written by Tony Garnock-Jones

http://github.com/tonyg/erlang-rfc4627

webdrv_wire

77> webdrv_wire:get_status(
 #webdrv_opts{url = "http://localhost:9515/"}).
{ok,<<>>,{obj,[{"build",{obj,[{"version",<<"alpha">>}]}},
 {"os",{obj,[{"arch",<<"x86">>},
 {"name",<<"Linux">>},
 {"version",<<"3.2.0-43-generic">>}]}}]}}
78> webdrv_wire:start_session(
 #webdrv_opts{url = "http://localhost:9515/"},
 webdrv_cap:default_chrome()).
{ok,<<"81892cb363f177b6b7a90d40e646c924">>,
 {obj,[{"acceptSslCerts",true},
 {"applicationCacheEnabled",false},
 {"browserConnectionEnabled",false},
 {"browserName",<<"chrome">>},

 ...]}}
79> webdrv_wire:set_url(
 #webdrv_opts{url = "http://localhost:9515/",
 session_id = "81892cb363f177b6b7a90d40e646c924" },
 <<"http://google.se">>).
{ok,<<"81892cb363f177b6b7a90d40e646c924">>,null}

Ouch! That is a lot of typing...

webdrv_session

93> webdrv_session:start_session(
 test, "http://localhost:9515/", webdrv_cap:default_chrome()).
{ok,<0.3045.0>}
94> webdrv_session:set_url(test, "http://google.se").
ok
95> {ok, E} = webdrv_session:find_element(test, "name", "q").
{ok,"0.4722895685117692:1"}
96> webdrv_session:send_value(
 test, E, "Erlang User Conference 2013").
ok
97> webdrv_session:submit(test, E).
ok
98> webdrv_session:get_page_title(test).
{ok,"erlang user conference 2013 - Sök på Google"}

It is on GitHub

https://github.com/Quviq/webdrv

•  Makefile
•  make release – creates webdrv-1.0, copy it to

<erlang>/lib to install

•  MIT license

QuickCheck

•  Originally developed by John Hughes and
Koen Claessen

•  Property based testing
•  Controlled randomness
•  Shrinking
•  QuickCheck libraries in many languages

Quviq - QuickCheck

•  Written in Erlang
•  Many extensions:

–  Statem: testing using finite state machines
–  PULSE: finding race conditions
–  Symbolic test case generation
–  Mocking (C and Erlang)
–  Testing C-code
–  Composable components

Testing WebDriver with QuickCheck

•  We can combine QuickCheck and WebDriver
•  Insert data generators
•  Use QuickCheck (finite) state machine to

•  store system state
•  generate valid sequences of WebDriver calls

•  Rely on shrinking to find minimal counterexample
•  Play back a counterexample

•  The tests used: Chrome, Firefox, and HtmlUnit
•  The tests used: Selenium Server 2.33.0, and

Chromedriver 2 (r202239)

What did we find?

•  How hard can it be to follow a specification?

Answer: Very hard!

Problem I – Selenium 302 redirect

Problem:
When creating a new session (doing a POST request),
Selenium answers with a 302 redirection.

From specification:
Returns: A 303 See Other redirect to /session/:sessionId,
where :sessionId is the ID of the newly created session.

Prob. II – Chromedriver case sensitive headers

Problem:
Certain parameters in a HTTP POST request are ignored
by Chromedriver. If they are passed with the expected
capitalization it works.

RFC 2616:
Each header field consists of a name followed by a colon
(":") and the field value. Field names are case-insensitive.

Prob. III – httpc_request is broken in OTP/R15

Problem:
When getting a 303 See Other, from Chromedriver,
{autoredirect, true} fails to automatically redirect.

RFC 2616, 10.3.4:
The response to the request can be found under a different
URI and SHOULD be retrieved using a GET method on
that resource.

Fixed in R16, but more
problems arose...

Prob. IV – Maximizing a window twice hangs

Problem:
When using Chromedriver, maximizing a window twice
hangs the WebDriver session.

DEMO

Prob. IV – Maximizing a window twice hangs

set_window_maximize({Session, Window}) ->

 webdrv_session:set_window_maximize(Session, Window).

set_window_maximize_args(S) ->[session_and_window(S)].

set_window_maximize_pre(S, [{Sess, _Window}]) ->

 #session{ browser = B, driver = D, maximized = M }

 = get_session(S, Sess),

 %% Bug in chromedriver used by selenium.

 not M orelse B /= chrome orelse D /= selenium.

set_window_maximize_next(S, _V, [{Sess, _Win}]) ->

 Win = get_curr_window(S, Sess),

 set_window(S, Sess, Win#window{ size = undefined,

 position = undefined,

 maximized = true}).

set_window_maximize_post(_S, [{_Sess, _Win}], Res) ->

 eq(Res, ok).

Prob. IV – Maximizing a window twice hangs

Problem:
When using Chromedriver, maximizing a window twice
hangs the WebDriver session.

Fixed in Chromedriver 2

Prob. V – Chromedriver 2 screenshot fails

Problem:
If you open a second window/tab, and then focus back on
the first window, grabbing a screenshot of that window fails.
If we close the second window (in the background) a
screenshot can be taken!

The power of QuickCheck:
No (sane) tester would write this (unit) test case. (In fact the
first non-shrunk test case involved three windows and
several re-focusing operations...)

Other problems and quirks

•  Timeouts/2 not implemented - Fixed
•  Get window size/position fails if multiple tabs (=windows)

are open.
•  Not reporting errors consistently (get_window_size/

postition + others)
•  Inconsistent error reporting

'UnknownError'/'NoSuchElement'

The way forward

•  Write traditional QuickCheck models of web
service API

•  Write utility libraries on top of webdrv_session

•  Integrate with Selenium IDE – converting test
cases into Erlang EUnit tests

•  Automatically derive a state machine
specification from a set of EUnit tests

Using recorded tests in Erlang

•  Test cases can be recorded in Selenium IDE
(only available for Firefox)

•  Reasonably straightforward to translate a test
case into a sequence of webdrv_session calls

•  Wrapping it as an EUnit test or a simple
QuickCheck property

Deriving state machines from EUnit tests

•  Earlier research have looked into automatic
generation/derivation of state machines

•  Input is a set of tests, output is a state machine
describing the set of tests

•  Could be a cheap way to get started with a
QuickCheck model of a web service

Try it! Break it! Fix it!

•  Try using it
•  If it breaks, fix it!

https://github.com/Quviq/webdrv

