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Riak

e A distributed highly available eventually consistent
highly scalable open source key-value database

written primarily in Erlang.
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Riak

e Modeled after Amazon Dynamo

e see Andy Gross's "Dynamo, Five Years Later” for details
https://speakerdeck.com/argv0/dynamo-five-years-later

e see annotated version of Dynamo paper with comparisons
to Riak: http://docs.basho.com/riak/latest/references/
dynamo/

e Also provides MapReduce, secondary indexes, and full-text
search

e Built for operational ease
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Riak Architecture

(Erlang]( Ruby )(Python][ PHP ][Nodejs]

(Java ](C/C++]( .NET ][ Go ][More ]

Riak Clients .

------------------------------------

image courtesy of Eric Redmond, "A Little Riak Book™ https:/github.com/coderoshi/little riak book/
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Riak Architecture
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Distributing Data

e Riak uses consistent hashing to spread
data across the cluster

e Minimizes remapping of keys when
number of nodes changes

e Spreads data evenly and minimizes
hotspots
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Consistent Hashing

e Riak uses SHA-1 as a hash function
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Consistent Hashing

e Riak uses SHA-1 as a hash function

e Treats its 160-bit value space as a ring

e Divides the ring into partitions called "virtual
nodes" or vnodes (default 64)

e Each vnode claims a portion of the ring space
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Consistent Hashing

* Riak uses SHA-1 as a hash function
e Treats its 160-bit value space as a ring

e Divides the ring into partitions called "virtual
nodes"” or vhodes (default 64)

e Each vnode claims a portion of the ring space

 Each physical node in the cluster hosts
multiple vnodes
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N/R/W Values

e N = number of replicas to store (default 3)

e R = read quorum = number of replica responses needed
for a successful read (default N/2+1)

e W = write quorum = number of replica responses
needed for a successful write (default N/2+1)
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e Coordination: node receiving client request coordinates the operation
across the owning replicas

e Gossip: Riak nodes share ring state via a gossip protocol

e Active Anti-Entropy: nodes actively verify and repair data consistency
across the ring (new with Riak 1.3)

e Erlang: distributed Erlang nodes form a full mesh and do periodic node
availability checks

e Multi-Data Center Replication: sync data across multiple clusters (part
of Riak Enterprise, see http://basho.com/riak-enterprise/)
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Riak TCP Traffic

e Client requests: made to any node in the ring

e Coordination: node receiving client request coordinates the operation
across the owning replicas

e Gossip: Riak nodes share ring state via a gossip protocol

e Active Anti-Entropy: nodes actively verify and repair data consistency
across the ring (new with Riak 1.3)

e Erlang: distributed Erlang nodes form a full mesh and do periodic node
availability checks

e Multi-Data Center Replication: sync data across multiple clusters (part
of Riak Enterprise, see http://basho.com/riak-enterprise/)

o« Handoff
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Handoff

e If primary vnode is unavailable, request goes to a
fallback vnode
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fallback vnode
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Handoff

e If primary vnode is unavailable, request goes to a
fallback vnode

e Fallback vnode holds data on behalf of the unavailable
primary

e Fallback vhode watches for return of primary vnode

e When the primary returns, the fallback performs a
handoff to transfer data to it
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Cluster Throughput Under Extreme Load

Throughput

Op/sec
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| et's Scale

e Scaling up/down in Riak means adding/removing nodes
e« Adding: new nodes claim ring partitions

e Removing: existing nodes reclaim ring partitions from
leaving nodes

e Handoff occurs to move data between nodes
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Throughput With Node Join/Leave

Throughput

Op/sec

Friday, June 14, 13

23
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e Latencies also increase
e Increases in 1/O, CPU, network congestion
e Potential for TCP incast problems

e Potential for client timeouts
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TCP Incast
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TCP Incast

e Affects many-to-one operations in datacenters

e In microbursts, senders overrun switch buffers, packets
are dropped, senders back off and slow down

e Result is significant throughput collapse
e Affects systems like Riak because multiple vnodes (the

many) often send messages nearly simultaneously to a
coordinator (the one)
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e Quick reacting delay-based congestion control

e Uses one-way delay measurements to estimate data
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with other flows
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LEDBAT

e Low Extra Delay Background Transport (RFC 6817,
experimental, Dec. 2012)

e Quick reacting delay-based congestion control

e Uses one-way delay measurements to estimate data
path queuing

e Adds low extra queuing delay to minimize interference
with other flows

e Suitable for "background” tasks like bulk data transfer
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Micro Transport Protocol (uTP)

« LEDBAT congestion control, precedes the RFC

e Created in Internet2 research, implemented by Plicto,
acquired by Bittorrent in 2006

e Bittorrent has been using uTP since 2009

e Their C++ library implementation is on github:
https://github.com/bittorrent/libutp
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Gen_utp

e Erlang interface matches
standard library gen_tcp

e gen_utp module wraps
access to the driver

e C++ driver code wraps
libutp

e C++ driver also manages
underlying UDP sockets

©
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Gen_utp Features

e« Connection-oriented protocol

e UTP sockets represented via Erlang ports, same as for
TCP and UDP

o Active modes: false, true, once
e Binary or list data delivery

e Supports sending iolists

e IPv4 and IPv6
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e Message headers (first N bytes of each message
delivered as a list)
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Gen_utp Features

 Packet option (raw, 0, 1, 2, 4)

e Message headers (first N bytes of each message
delivered as a list)

e Network interface binding

e Attach to already-open UDP socket file descriptor
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Gen_utp Functions

o listen, accept, async_accept
e cOnnect

e send, recv
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e listen, accept, async_accept
e cOnnect
e send, recv
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Gen_utp Functions

e listen, accept, async_accept
e connect

e send, recv

e Close

e sockname, peername, port
e setopts, getopts

e controlling_process
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19> {ok,ListenSock}
{ok,#Port<0.616>}

Gen_utp Example

= gen_utp:listen(0, [{active,false},binary]).

Friday, June 14, 13

32



19> {ok,ListenSock}
{ok,#Port<0.616>}

Gen_utp Example

= gen_utp:listen(0®, [{active,false},binary]).

20> {ok,Ref} = gen_utp:async_accept(ListenSock).

{ok,#Ref<0.0.0.177>}

Friday, June 14, 13

33



Gen_utp Example

19> {ok,ListenSock} =
{ok,#Port<0.616>}

gen_utp:listen(0,

[{active,false},binary]).

20> {ok,Ref} = gen_utp:async_accept(ListenSock).

{ok, #Ref<0.0.0.177>}

21> {ok,{ServerIP,ServerPort}} = gen_utp:sockname(ListenSock).

{ok,{{0,0,0,0},60704}}
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Gen_utp Example

19> {ok,ListenSock} =
{ok,#Port<0.616>}

gen_utp:listen(0, [{active,false},binary]).

20> {ok,Ref} = gen_utp:async_accept(ListenSock).

{ok,#Ref<0.0.0.177>}

21> {ok,{ServerIP,ServerPort}} = gen_utp:sockname(ListenSock).

{ok,{{0,0,0,0},60704}}
22> {ok,ClientSock} =
{ok,#Port<0.617>}

gen_utp:connect("localhost", ServerPort,

[{active,true}]).
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Gen_utp Example

19> {ok,ListenSock} = gen_utp:listen(®, [{active,false},binary]).
{ok,#Port<0.616>}

20> {ok,Ref} = gen_utp:async_accept(ListenSock).

{ok,#Ref<0.0.0.177>}

21> {ok,{ServerIP,ServerPort}} = gen_utp:sockname(ListenSock).
{ok,{{0,0,0,0},60704}}

22> {ok,ClientSock} = gen_utp:connect("localhost", ServerPort, [{active,true}]).
{ok,#Port<0.617>}

23> receive {utp_async,ListenSock,Ref,{ok,ServerSock}} -> ServerSock end.
#Port<0.618>
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Gen_utp Example

19> {ok,ListenSock} = gen_utp:listen(®, [{active,false},binary]).
{ok,#Port<0.616>}

20> {ok,Ref} = gen_utp:async_accept(ListenSock).

{ok,#Ref<0.0.0.177>}

21> {ok,{ServerIP,ServerPort}} = gen_utp:sockname(ListenSock).
{ok,{{0,0,0,0},60704}}

22> {ok,ClientSock} = gen_utp:connect("localhost", ServerPort, [{active,true}]).
{ok,#Port<0.617>}

23> receive {utp_async,ListenSock,Ref,{ok,ServerSock}} -> ServerSock end.
#Port<0.618>

24> gen_utp:send(ClientSock, '"this 1is a test").

ok
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Gen_utp Example

19> {ok,ListenSock} = gen_utp:listen(®, [{active,false},binary]).
{ok,#Port<0.616>}

20> {ok,Ref} = gen_utp:async_accept(ListenSock).

{ok,#Ref<0.0.0.177>}

21> {ok,{ServerIP,ServerPort}} = gen_utp:sockname(ListenSock).
{ok,{{0,0,0,0},60704}}

22> {ok,ClientSock} = gen_utp:connect("localhost", ServerPort, [{active,true}]).
{ok,#Port<0.617>}

23> receive {utp_async,ListenSock,Ref,{ok,ServerSock}} -> ServerSock end.
#Port<0.618>

24> gen_utp:send(ClientSock, '"this 1is a test").

ok

25> {ok,Msg} = gen_utp:recv(ServerSock, 0).

{ok,<<"this 1is a test'">>}
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Gen_utp Example

19> {ok,ListenSock} = gen_utp:listen(®, [{active,false},binary]).
{ok,#Port<0.616>}

20> {ok,Ref} = gen_utp:async_accept(ListenSock).

{ok,#Ref<0.0.0.177>}

21> {ok,{ServerIP,ServerPort}} = gen_utp:sockname(ListenSock).
{ok,{{0,0,0,0},60704}}

22> {ok,ClientSock} = gen_utp:connect("localhost", ServerPort, [{active,true}]).
{ok,#Port<0.617>}

23> receive {utp_async,ListenSock,Ref,{ok,ServerSock}} -> ServerSock end.
#Port<0.618>

24> gen_utp:send(ClientSock, '"this 1is a test").

ok

25> {ok,Msg} = gen_utp:recv(ServerSock, 0).

{ok,<<"this 1is a test'">>}

26> gen_utp:send(ServerSock, <<"this 1is also a test'>>).

ok
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Gen_utp Example

19> {ok,ListenSock} = gen_utp:listen(®, [{active,false},binary]).
{ok,#Port<0.616>}

20> {ok,Ref} = gen_utp:async_accept(ListenSock).

{ok,#Ref<0.0.0.177>}

21> {ok,{ServerIP,ServerPort}} = gen_utp:sockname(ListenSock).
{ok,{{0,0,0,0},60704}}

22> {ok,ClientSock} = gen_utp:connect("localhost", ServerPort, [{active,true}]).
{ok,#Port<0.617>}

23> receive {utp_async,ListenSock,Ref,{ok,ServerSock}} -> ServerSock end.
#Port<0.618>

24> gen_utp:send(ClientSock, '"this 1is a test").

ok

25> {ok,Msg} = gen_utp:recv(ServerSock, 0).

{ok,<<"this 1is a test'">>}

26> gen_utp:send(ServerSock, <<"this 1is also a test'>>).

ok

27> flush().

Shell got {utp,#Port<0.617>,"this 1is also a test"}

ok
©
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Gen_utp Internals

e libutp is a C++ library, so the Erlang driver is also C++
e libutp works via callbacks

e libutp implements the uTP protocol, you have to supply
all socket handling

e Sockets are UDP, libutp adds the protocol reliability

©

Friday, June 14, 13

41



Gen_utp Internals

e« Master branch has a C++ class hierarchy of Handlers

« Handlers implement socket handling, uTP handling, and
Erlang port handling

« Development branch (not yet working) breaks these into
parallel hierarchies of Handlers and Ports
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Handler Classes

e SocketHandler: handles UDP sockets
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e SocketHandler: handles UDP sockets
e a listener uses a SocketHandler

e UtpHandler: handles libutp callbacks
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Handler Classes

e SocketHandler: handles UDP sockets
e a listener uses a SocketHandler
e UtpHandler: handles libutp callbacks

e derived from SocketHandler
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Handling Events

« UDP sockets are registered in the Erlang runtime's
polling set

e Erlang runtime calls SocketHandlers when sockets have
Input

e libutp also has a timeout check that the uTP driver calls
every 10ms
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Port Classes

e DrvPort: abstract base class for all Port classes
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e DrvPort: abstract base class for all Port classes
e MainPort: implements initial port into uTP driver
e implements listen and connect calls

e SocketPort: base class for ports dealing with SocketHandlers
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Port Classes

e DrvPort: abstract base class for all Port classes
e« MainPort: implements initial port into uTP driver
e implements listen and connect calls
e SocketPort: base class for ports dealing with SocketHandlers

e ListenPort: port returned from listen calls
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Port Classes

DrvPort: abstract base class for all Port classes

MainPort: implements initial port into uTP driver

e implements listen and connect calls

SocketPort: base class for ports dealing with SocketHandlers

e ListenPort: port returned from listen calls

UtpPort: base class for ports dealing with UtpHandlers
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Port Classes

DrvPort: abstract base class for all Port classes

MainPort: implements initial port into uTP driver

e implements listen and connect calls

SocketPort: base class for ports dealing with SocketHandlers

e ListenPort: port returned from listen calls

UtpPort: base class for ports dealing with UtpHandlers

e AcceptPort: port returned from accept calls
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Port Classes

DrvPort: abstract base class for all Port classes

MainPort: implements initial port into uTP driver

e implements listen and connect calls

SocketPort: base class for ports dealing with SocketHandlers

e ListenPort: port returned from listen calls

UtpPort: base class for ports dealing with UtpHandlers

e AcceptPort: port returned from accept calls

e« ConnectPort: port returned from connect calls
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Implementing Accept

e AUTP client "connects” to a uTP listener, but it's really
connectionless UDP underneath
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Implementing Accept

e AUuTP client "connects” to a uTP listener, but it's really
connectionless UDP underneath

e« TCP accept means "give me a new socket connected to
that client”, and we want the same semantics
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Implementing Accept

e For incoming connection requests:

e open a new accept socket sharing the listen port (using
SO_REUSEADDR or SO_REUSEPORT)

e connect(2) the UDP accept socket to the client (yes,
connect works for UDP too)

e any subsequent traffic from that client is seen only by the
accept socket
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Implementing Accept

e FOor incoming connection requests:

e open a new accept socket sharing the listen port (using
SO_REUSEADDR or SO_REUSEPORT)

e connect(2) the UDP accept socket to the client (yes,
connect works for UDP too)

e any subsequent traffic from that client is seen only by the
accept socket

 all sends on the accept socket go only to that client (i.e.,
using send vs. sendto)

©

Friday, June 14, 13

47



Implementing Accept

e Unlike inet_drv, the uTP driver uses the driver queue for
reads, not writes

e Implementing {active,false} or {active,once} for TCP just
means deselecting the socket

e« UTP driver always has to read all incoming messages to
check if they're uTP messages, so it never deselects

e driver queue stores read messages not yet delivered
up through gen_utp
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Shortcomings

e No good way to implement a listen queue
e« UTP client will just timeout if nobody's accepting

e UTP is slow when closing a socket, seems to want to
exchange a bunch of messages

e libutp is not thread-safe, all access must be serialized

e Getting lifetimes of sockets, Erlang ports, and C++ handler
instances right is hard

e hoping the Handler/Port split will help
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Gen_utp Testing

e Definitely a work in progress!
e Integrated with Riak some months ago on a branch
e successfully performed small-scale handoff

e but no large-scale Riak testing yet

©

Friday, June 14, 13

50



Gen_utp Testing




Gen_utp Testing

e With direct Ethernet connection between two systems:
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Gen_utp Testing

e With direct Ethernet connection between two systems:
e same throughput as gen_tcp at 10baseT
e same throughput as gen_tcp at 100baseT

e 2x slower than gen_tcp at 1000baseT
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Gen_utp Testing

e With direct Ethernet connection between two systems:
e same throughput as gen_tcp at 10baseT
e same throughput as gen_tcp at 100baseT
e 2Xx slower than gen_tcp at 1000baseT

e gen_utp shows higher CPU in all cases, most likely due
to copying forced by libutp callback interface
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Gen_utp Testing

e Lower throughput on fast networks could be a
showstopper, since datacenter LANs are usually fast
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Gen_utp Testing

e Lower throughput on fast networks could be a
showstopper, since datacenter LANs are usually fast

e Always deferring to TCP flows might not always be
desirable, for example:

e when adding nodes to scale a cluster that's struggling
to keep up with load

e you want data transfer to happen as quickly as
possible so the new nodes help manage load
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Current Status

e gen_utp available at
https://github.com/basho-labs/gen_utp

e It mostly works but:

e recent updates for Erlang R16B introduced bugs on
master related to binary vs. list delivery

e current development branch (Handler/Port split) still
needs work
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Next Steps

e Next step: testing on a Riak cluster under load
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Next Steps

e Next step: testing on a Riak cluster under load
e Redesign the driver to work with Erlang's prim_inet layer

e this should allow SSL to work over uTP
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Next Steps

 Next step: testing on a Riak cluster under load
e Redesign the driver to work with Erlang's prim_inet layer
e this should allow SSL to work over uTP

e If it doesn't help with congestion, consider using it for
Riak Enterprise multi-datacenter syncing over WANS
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Related Work

e Jesper Louis Andersen (@jlouis) wrote a partial pure
Erlang implementation of uTP:
https://github.com/jlouis/erlang-utp
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Related Work

e Jesper Louis Andersen (@jlouis) wrote a partial pure
Erlang implementation of uTP:
https://github.com/jlouis/erlang-utp

e« He basically reverse engineered libutp

e | didn't use it because | thought libutp would make
things easier, and because | can layer SSL over a driver
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Related Work

e Jesper Louis Andersen (@jlouis) wrote a partial pure
Erlang implementation of uTP:
https://github.com/jlouis/erlang-utp

e« He basically reverse engineered libutp

e | didn't use it because | thought libutp would make
things easier, and because | can layer SSL over a driver

e He's stopped work on it but is willing to entertain pull
requests :)
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THANKS

http://basho.com
@stevevinosk
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