ADDRESSING
NETWORK CONGESTION
IN RIAK CLUSTERS

Steve Vinoski

Architecture Group, Basho Technologies
Cambridge, MA USA

http://basho.com
@stevevinoski
vinoski@ieee.org
http://steve.vinoski.net/

©

http://basho.com
http://basho.com
mailto:vinoski@ieee.org
mailto:vinoski@ieee.org
http://steve.vinoski.net
http://steve.vinoski.net

00L TALK BRO

Friday, June 14, 13

Friday, June 14, 13 3

A -
R

¥

Friday, June 14, 13 3

Riak

e A distributed highly available

Friday, June 14, 13

Riak

e A distributed highly available eventually consistent

Friday, June 14, 13

Riak

e A distributed highly available eventually consistent
highly scalable

Friday, June 14, 13

Riak

e A distributed highly available eventually consistent
highly scalable open source

Friday, June 14, 13

Riak

e A distributed highly available eventually consistent
highly scalable open source key-value database

Friday, June 14, 13

Riak

e A distributed highly available eventually consistent
highly scalable open source key-value database

written primarily in Erlang.

©

Friday, June 14, 13

Riak

e Modeled after Amazon Dynamo

e see Andy Gross's "Dynamo, Five Years Later” for details
https://speakerdeck.com/argv0/dynamo-five-years-later

e see annotated version of Dynamo paper with comparisons
to Riak: http://docs.basho.com/riak/latest/references/
dynamo/

e Also provides MapReduce, secondary indexes, and full-text
search

e Built for operational ease

©

Friday, June 14, 13

https://speakerdeck.com/argv0/dynamo-five-years-later
https://speakerdeck.com/argv0/dynamo-five-years-later
http://docs.basho.com/riak/latest/references/dynamo/
http://docs.basho.com/riak/latest/references/dynamo/
http://docs.basho.com/riak/latest/references/dynamo/
http://docs.basho.com/riak/latest/references/dynamo/

Riak Architecture

(Erlang](Ruby)(Python][PHP][Nodejs]

(Java](C/C++](.NET][Go][More]

Riak Clients .

image courtesy of Eric Redmond, "A Little Riak Book™ https:/github.com/coderoshi/little riak book/

Friday, June 14, 13

https://github.com/coderoshi/little_riak_book/
https://github.com/coderoshi/little_riak_book/

Riak Architecture

[Erlang][Ruby)[Python][PHP][Nodejs]
(Java](C/C++](.NET][Go][More]

Riak Clients .
____________________________________ P4
(f—=======—====-=----==-=—-==--=--=-=< S
' I
l[Webmachine HTTP] [Riak PB]:
; |
0 [
{ Riak API ;

image courtesy of Eric Redmond, "A Little Riak Book™ https://github.com/coderoshi/little riak book/

Friday, June 14, 13

https://github.com/coderoshi/little_riak_book/
https://github.com/coderoshi/little_riak_book/

Riak Architecture

[Erlang][Ruby][Python][PHP][Nodejs]
(Java](C/C++](.NET][Go][More]

Riak Clients .
____________________________________ P4
(f—=======—====-=----==-=—-==--=--=-=< S
' :
l[Webmachine HTTP] [Riak PB]:
l .
| |
! Riak API ; '
— ‘:
l[Riak KV] [Riak Pipe J [Yokozuna J:
l .
| |
! Riak Core :

image courtesy of Eric Redmond, "A Little Riak Book™ https://github.com/coderoshi/little riak book/

Friday, June 14, 13

https://github.com/coderoshi/little_riak_book/
https://github.com/coderoshi/little_riak_book/

Riak Architecture

[Erlang][Ruby][Python][PHP][Nodejs]

[Java][C/C++][.NET)[Go)[More)

Riak Clients .
\ ___________________________________ P4
((m—————--——----—------—---—-—---—-—------=- J
! |
l[Webmachine HTTP J [Riak PB J:
; |
" |
{ Riak API ;
N N\ ‘;
l[Riak KV J [Riak Pipe J [Yokozuna]:
; |
" |
! Riak Core :
[Bltcaskj [eLeveIDBJ [Memory] [Multi J
L Erlang)

image courtesy of Eric Redmond, "A Little Riak Book™ https://github.com/coderoshi/little riak book/

Friday, June 14, 13

https://github.com/coderoshi/little_riak_book/
https://github.com/coderoshi/little_riak_book/

Riak Architecture

l Erlang l[Ruby][Python][PHP][Nodejs]
(Java](C/C++](.NET][Go][More]

Riak Clients .
___________________________________ V4
--------------------------------- <)

f }
: Webmachine HTTP Rlak PB :
: I
i |
: Riak API |
NN :
: Riak KV Rlak Plpe Yokozuna :
: I
i |
{ Riak Core '
| Bitcask l'eLeveIDB l' Memory l' Multi l
Erlang)

Erlang parts

image courtesy of Eric Redmond, "A Little Riak Book™ https://github.com/coderoshi/little riak book/

Friday, June 14, 13

https://github.com/coderoshi/little_riak_book/
https://github.com/coderoshi/little_riak_book/

Friday, June 14, 13

Riak Cluster

- \\\

St

""f'_

>, O KA
L Sl e
N I SR HH HIL X IO

10

Distributing Data

e Riak uses consistent hashing to spread
data across the cluster

e Minimizes remapping of keys when
number of nodes changes

e Spreads data evenly and minimizes
hotspots

©

Friday, June 14, 13

11

ey
PO 09
e et
RN
505

o

5K

——

e

)

_e

()
SRS s
LIRS ICR R

< LR O M N 0 X
e e e T oY e

Friday, June 14, 13

Consistent Hashing

e Riak uses SHA-1 as a hash function

| Friday, June 14, 13

12

Consistent Hashing

e Riak uses SHA-1 as a hash function

e Treats its 160-bit value space as a ring

Friday, June 14, 13

12

Consistent Hashing

e Riak uses SHA-1 as a hash function
e Treats its 160-bit value space as a ring

* Divides the ring into partitions called "virtual
nodes” or vnodes (default 64)

Friday, June 14, 13

12

Consistent Hashing

e Riak uses SHA-1 as a hash function

e Treats its 160-bit value space as a ring

e Divides the ring into partitions called "virtual
nodes" or vnodes (default 64)

e Each vnode claims a portion of the ring space

©

Friday, June 14, 13

12

Consistent Hashing

* Riak uses SHA-1 as a hash function
e Treats its 160-bit value space as a ring

e Divides the ring into partitions called "virtual
nodes"” or vhodes (default 64)

e Each vnode claims a portion of the ring space

 Each physical node in the cluster hosts
multiple vnodes

©

Friday, June 14, 13

12

Hash Ring

ZléO 0

3%)160/4 2160/4

Hash Ring

7 160

0
) \ e single vnode/partition

node O

node |

a ring with 32 partitions

<160
&% node 2

)
/ o=

hash(<<"artist">>,<<"REM">>)

Friday, June 14, 13

Hash Ring

2 160

z//()
) \ /a single vnode/partition

node O

node |

a ring with 32 partitions

<160
&% node 2

)
/ =

hash(<<"artist">>,<<"REM">>)

NG — T T

S 2160/ bucket key

O

I

S

O " o

S

AR R Q '
LA N

Fa T e s ‘ /

NS A

N

Fara SN
B
L .° EN A .

R R A
Friday, June 14, 13 14

N/R/W Values

N/R/W Values

e N = number of replicas to store (default 3)

N/R/W Values

e N = number of replicas to store (default 3)

e R = read quorum = number of replica responses needed
for a successful read (default N/2+1)

Friday, June 14, 13

15

N/R/W Values

e N = number of replicas to store (default 3)

e R = read quorum = number of replica responses needed
for a successful read (default N/2+1)

e W = write quorum = number of replica responses
needed for a successful write (default N/2+1)

©

Friday, June 14, 13

15

Friday, June 14, 13

N/R/W Values

N
—
.

- e

glelels

node

node 2

node 3

Riak TCP Traffic

Riak TCP Traffic

e Client requests: made to any node in the ring

Riak TCP Traffic

e Client requests: made to any node in the ring

e Coordination: node receiving client request coordinates the operation
across the owning replicas

Friday, June 14, 13

17

Riak TCP Traffic

e Client requests: made to any node in the ring

« Coordination: node receiving client request coordinates the operation
across the owning replicas

e Gossip: Riak nodes share ring state via a gossip protocol

Friday, June 14, 13

17

Riak TCP Traffic

e Client requests: made to any node in the ring

e Coordination: node receiving client request coordinates the operation
across the owning replicas

e Gossip: Riak nodes share ring state via a gossip protocol

e Active Anti-Entropy: nodes actively verify and repair data consistency
across the ring (new with Riak 1.3)

Friday, June 14, 13

17

Riak TCP Traffic

e Client requests: made to any node in the ring

« Coordination: node receiving client request coordinates the operation
across the owning replicas

e Gossip: Riak nodes share ring state via a gossip protocol

e Active Anti-Entropy: nodes actively verify and repair data consistency
across the ring (new with Riak 1.3)

e Erlang: distributed Erlang nodes form a full mesh and do periodic node
availability checks

©

Friday, June 14, 13

17

Riak TCP Traffic

e Client requests: made to any node in the ring

e Coordination: node receiving client request coordinates the operation
across the owning replicas

e Gossip: Riak nodes share ring state via a gossip protocol

e Active Anti-Entropy: nodes actively verify and repair data consistency
across the ring (new with Riak 1.3)

e Erlang: distributed Erlang nodes form a full mesh and do periodic node
availability checks

e Multi-Data Center Replication: sync data across multiple clusters (part
of Riak Enterprise, see http://basho.com/riak-enterprise/)

©

Friday, June 14, 13

17

http://basho.com/riak-enterprise/
http://basho.com/riak-enterprise/

Riak TCP Traffic

e Client requests: made to any node in the ring

e Coordination: node receiving client request coordinates the operation
across the owning replicas

e Gossip: Riak nodes share ring state via a gossip protocol

e Active Anti-Entropy: nodes actively verify and repair data consistency
across the ring (new with Riak 1.3)

e Erlang: distributed Erlang nodes form a full mesh and do periodic node
availability checks

e Multi-Data Center Replication: sync data across multiple clusters (part
of Riak Enterprise, see http://basho.com/riak-enterprise/)

o« Handoff

©

Friday, June 14, 13

17

http://basho.com/riak-enterprise/
http://basho.com/riak-enterprise/

A -
R

¥

Friday, June 14, 13 18

Handoff

e If primary vnode is unavailable, request goes to a
fallback vnode

Friday, June 14, 13

18

Handoff

e If primary vnode is unavailable, request goes to a
fallback vnode

e Fallback vnode holds data on behalf of the unavailable
primary

Friday, June 14, 13

18

Handoff

e If primary vnode is unavailable, request goes to a
fallback vnode

e Fallback vnode holds data on behalf of the unavailable
primary

e Fallback vhode watches for return of primary vnode

©

Friday, June 14, 13

18

Handoff

e If primary vnode is unavailable, request goes to a
fallback vnode

e Fallback vnode holds data on behalf of the unavailable
primary

e Fallback vhode watches for return of primary vnode

e When the primary returns, the fallback performs a
handoff to transfer data to it

©

Friday, June 14, 13 18

N/R/W Values

_get/put("artist", "REM",
R/W=2)

K'<<>k, Object}

Cluster Throughput Under Extreme Load

Throughput

Op/sec

Elapsed Secs

Friday, June 14, 13

20

Latency Of Puts Under Extreme Load

pul
S - I —
~
@
544“!"» Percentile
8>~ — COh
o ~ 99.91h
(i
_' L ——
A
10
|
10000 A0 00 30D 4N

A -
R

¥

Friday, June 14, 13 22

| et's Scale

e Scaling up/down in Riak means adding/removing nodes

Friday, June 14, 13

22

| et's Scale

e Scaling up/down in Riak means adding/removing nodes

e« Adding: new nodes claim ring partitions

Friday, June 14, 13

22

| et's Scale

e Scaling up/down in Riak means adding/removing nodes
e« Adding: new nodes claim ring partitions

e Removing: existing nodes reclaim ring partitions from
leaving nodes

Friday, June 14, 13

22

| et's Scale

e Scaling up/down in Riak means adding/removing nodes
e« Adding: new nodes claim ring partitions

e Removing: existing nodes reclaim ring partitions from
leaving nodes

e Handoff occurs to move data between nodes

©

Friday, June 14, 13

22

Throughput With Node Join/Leave

Throughput

Op/sec

Friday, June 14, 13

23

Throughput With Node Join/Leave

Throughput

:'."'.*.'"u&."“ 3., % -A:,‘;;\‘Xt‘."—;m” : s

Y, b v,.-._.-..-:.-.%. . 49
v Sar=oR gyl §, 5 v C o .Y ‘% o* 3 ! .

(&) ' . - = . ?. ..} "O ™ [Bl

_8 :) ‘. 3 B . ‘: §. - s °

a El - w Emors
O

Elapsed Secs

Friday, June 14, 13 23

Throughput With Node Join/Leave

Throughput
s, '&.»‘:«“&& 0. Neod %y N w,- v TS
Bt s T VoL ““va o § -
® ol "ant o o ". < - *
. ” 2 CI ,.'.E F 4 »
? ..} ™ °
: L L

~ Opisec

Elapsed Secs

e | atencies also increase

Friday, June 14, 13

23

Throughput With Node Join/Leave

Throughput
i . '&.»‘:«“&& 0. Neod %y '&p: w,- v P
ek Y558 =y VUL, o 3 -
® ol "ant * o o V. < - *
. v :'.E d .
5 ..} ™ °
, i % L

~ Opisec

Elapsed Secs

e Latencies also increase
e Increases in |/O, CPU, network congestion

©

Friday, June 14, 13

23

Throughput With Node Join/Leave

Throughput
-*"ﬂ"& * 3' .‘ .A. ‘,.30 ‘.. ’ﬁ ‘. "“
S o Vo « LT L S 4 -
» - s - ‘l-.. e = a w"® V, < - *
. a o® o * L 2 * @ o @ o i i »
gt g AU e NGRS I
Kl ““ ! ~ L B , s

== Emors

~ Opisec

Elapsed Secs

e Latencies also increase
e Increases in |/O, CPU, network congestion
e Potential for TCP incast problems

©

Friday, June 14, 13 23

Throughput With Node Join/Leave

Throughput
-*"ﬂ"& * 3' .‘ .A. ‘,.30 ‘.. ’ﬁ ‘. "“
El c. “ 0” "..‘ ...- «% LAY A »4 ' =
» - s - ‘l-.. e = a w"® V, < - *
% “ o - s " - .00 ~ ** A o" . ‘ .
gt e > oSy | i A
El ‘> ! ~ L X , :

== Emors

~ Opisec

Elapsed Secs

e Latencies also increase
e Increases in 1/O, CPU, network congestion
e Potential for TCP incast problems

e Potential for client timeouts

©

Friday, June 14, 13 23

A -
R

¥

Friday, June 14, 13 24

TCP Incast

e Affects many-to-one operations in datacenters

Friday, June 14, 13

24

TCP Incast

e Affects many-to-one operations in datacenters

e In microbursts, senders overrun switch buffers, packets
are dropped, senders back off and slow down

Friday, June 14, 13

24

TCP Incast

e Affects many-to-one operations in datacenters

e In microbursts, senders overrun switch buffers, packets
are dropped, senders back off and slow down

e Result is significant throughput collapse

Friday, June 14, 13

24

TCP Incast

e Affects many-to-one operations in datacenters

e In microbursts, senders overrun switch buffers, packets
are dropped, senders back off and slow down

e Result is significant throughput collapse
e Affects systems like Riak because multiple vnodes (the

many) often send messages nearly simultaneously to a
coordinator (the one)

©

Friday, June 14, 13

24

A -
R

¥

Friday, June 14, 13 25

LEDBAT

e Low Extra Delay Background Transport (RFC 6817,
experimental, Dec. 2012)

LEDBAT

e Low Extra Delay Background Transport (RFC 6817,
experimental, Dec. 2012)

e Quick reacting delay-based congestion control

Friday, June 14, 13

25

LEDBAT

e Low Extra Delay Background Transport (RFC 6817,
experimental, Dec. 2012)

e Quick reacting delay-based congestion control

e Uses one-way delay measurements to estimate data
path queuing

Friday, June 14, 13

25

LEDBAT

e Low Extra Delay Background Transport (RFC 6817,
experimental, Dec. 2012)

e Quick reacting delay-based congestion control

e Uses one-way delay measurements to estimate data
path queuing

e Adds low extra queuing delay to minimize interference
with other flows

©

Friday, June 14, 13

25

LEDBAT

e Low Extra Delay Background Transport (RFC 6817,
experimental, Dec. 2012)

e Quick reacting delay-based congestion control

e Uses one-way delay measurements to estimate data
path queuing

e Adds low extra queuing delay to minimize interference
with other flows

e Suitable for "background” tasks like bulk data transfer

©

Friday, June 14, 13

25

Micro Transport Protocol (uTP)

Micro Transport Protocol (uTP)

« LEDBAT congestion control, precedes the RFC

Micro Transport Protocol (uTP)

« LEDBAT congestion control, precedes the RFC

e Created in Internet2 research, implemented by Plicto,
acquired by Bittorrent in 2006

Friday, June 14, 13

26

Micro Transport Protocol (uTP)

« LEDBAT congestion control, precedes the RFC

e Created in Internet2 research, implemented by Plicto,
acquired by Bittorrent in 2006

e Bittorrent has been using uTP since 2009

Friday, June 14, 13

26

Micro Transport Protocol (uTP)

« LEDBAT congestion control, precedes the RFC

e Created in Internet2 research, implemented by Plicto,
acquired by Bittorrent in 2006

e Bittorrent has been using uTP since 2009

e Their C++ library implementation is on github:
https://github.com/bittorrent/libutp

©

Friday, June 14, 13

26

https://github.com/bittorrent/libutp
https://github.com/bittorrent/libutp

Integrating Libutp Into Riak

Integrating Libutp Into Riak

Integrating Libutp Into Riak

NELS

Erlang/OTP

Integrating Libutp Into Riak

Riak
Erlang

Erlang/OTP

Integrating Libutp Into Riak

Riak
Erlang

Erlang/OTP

inet drv
P IPDPSC TR

©

Integrating Libutp Into Riak

Erlang

inet drv

NELS

Erlang/OTP

T RICIB s Gl

©

Erlang

- drivers

Integrating Libutp Into Riak

Erlang

Gy

NELS

Erlang/OTP

inet drv

Taele

Pl S

©

Erlang

- drivers

Integrating Libutp Into Riak

trlang

Gy

NELS

Erlang/OTP

inet drv

Taele

Pl S

©

gen_utp

Erlang

- drivers

Gen_utp

e Erlang interface matches
standard library gen_tcp

e gen_utp module wraps
access to the driver

e C++ driver code wraps
libutp

e C++ driver also manages
underlying UDP sockets

©

C driver code

ibutp

UDP sockets

Friday, June 14, 13

28

Gen_utp Features

Gen_utp Features

« Connection-oriented protocol

Gen_utp Features

e« Connection-oriented protocol

e« UTP sockets represented via Erlang ports, same as for
TCP and UDP

Friday, June 14, 13

29

Gen_utp Features

« Connection-oriented protocol

e UTP sockets represented via Erlang ports, same as for
TCP and UDP

o Active modes: false, true, once

Friday, June 14, 13

29

Gen_utp Features

e« Connection-oriented protocol

e UTP sockets represented via Erlang ports, same as for
TCP and UDP

o Active modes: false, true, once

e Binary or list data delivery

Friday, June 14, 13

29

Gen_utp Features

e« Connection-oriented protocol

e UTP sockets represented via Erlang ports, same as for
TCP and UDP

o Active modes: false, true, once
e Binary or list data delivery

e Supports sending iolists

Friday, June 14, 13

29

Gen_utp Features

e« Connection-oriented protocol

e UTP sockets represented via Erlang ports, same as for
TCP and UDP

o Active modes: false, true, once
e Binary or list data delivery

e Supports sending iolists

e IPv4 and IPv6

Friday, June 14, 13

29

Gen_utp Features

Gen_utp Features

 Packet option (raw, 0, 1, 2, 4)

Gen_utp Features

 Packet option (raw, 0, 1, 2, 4)

e Message headers (first N bytes of each message
delivered as a list)

Friday, June 14, 13

30

Gen_utp Features

 Packet option (raw, 0, 1, 2, 4)

e« Message headers (first N bytes of each message
delivered as a list)

e Network interface binding

©

Friday, June 14, 13

30

Gen_utp Features

 Packet option (raw, 0, 1, 2, 4)

e Message headers (first N bytes of each message
delivered as a list)

e Network interface binding

e Attach to already-open UDP socket file descriptor

©

Friday, June 14, 13

30

Gen_utp Functions

Gen_utp Functions

e listen, accept, async_accept

Gen_utp Functions

e listen, accept, async_accept

e conhect

Gen_utp Functions

o listen, accept, async_accept
e cOnnect

e send, recv

Friday, June 14, 13

31

Gen_utp Functions

e listen, accept, async_accept
e cOnnect
e send, recv

e close

Friday, June 14, 13

31

Gen_utp Functions

e listen, accept, async_accept
e cOnnect

e send, recv

e Close

e sockname, peername, port

Friday, June 14, 13

31

Gen_utp Functions

e listen, accept, async_accept
e cOnnect

e send, recv

e Close

e sockname, peername, port

e setopts, getopts

Friday, June 14, 13

31

Gen_utp Functions

e listen, accept, async_accept
e connect

e send, recv

e Close

e sockname, peername, port
e setopts, getopts

e controlling_process

Friday, June 14, 13

31

19> {ok,ListenSock}
{ok,#Port<0.616>}

Gen_utp Example

= gen_utp:listen(0, [{active,false},binary]).

Friday, June 14, 13

32

19> {ok,ListenSock}
{ok,#Port<0.616>}

Gen_utp Example

= gen_utp:listen(0®, [{active,false},binary]).

20> {ok,Ref} = gen_utp:async_accept(ListenSock).

{ok,#Ref<0.0.0.177>}

Friday, June 14, 13

33

Gen_utp Example

19> {ok,ListenSock} =
{ok,#Port<0.616>}

gen_utp:listen(0,

[{active,false},binary]).

20> {ok,Ref} = gen_utp:async_accept(ListenSock).

{ok, #Ref<0.0.0.177>}

21> {ok,{ServerIP,ServerPort}} = gen_utp:sockname(ListenSock).

{ok,{{0,0,0,0},60704}}

Friday, June 14, 13

34

Gen_utp Example

19> {ok,ListenSock} =
{ok,#Port<0.616>}

gen_utp:listen(0, [{active,false},binary]).

20> {ok,Ref} = gen_utp:async_accept(ListenSock).

{ok,#Ref<0.0.0.177>}

21> {ok,{ServerIP,ServerPort}} = gen_utp:sockname(ListenSock).

{ok,{{0,0,0,0},60704}}
22> {ok,ClientSock} =
{ok,#Port<0.617>}

gen_utp:connect("localhost", ServerPort,

[{active,true}]).

Friday, June 14, 13

35

Gen_utp Example

19> {ok,ListenSock} = gen_utp:listen(®, [{active,false},binary]).
{ok,#Port<0.616>}

20> {ok,Ref} = gen_utp:async_accept(ListenSock).

{ok,#Ref<0.0.0.177>}

21> {ok,{ServerIP,ServerPort}} = gen_utp:sockname(ListenSock).
{ok,{{0,0,0,0},60704}}

22> {ok,ClientSock} = gen_utp:connect("localhost", ServerPort, [{active,true}]).
{ok,#Port<0.617>}

23> receive {utp_async,ListenSock,Ref,{ok,ServerSock}} -> ServerSock end.
#Port<0.618>

Friday, June 14, 13 36

Gen_utp Example

19> {ok,ListenSock} = gen_utp:listen(®, [{active,false},binary]).
{ok,#Port<0.616>}

20> {ok,Ref} = gen_utp:async_accept(ListenSock).

{ok,#Ref<0.0.0.177>}

21> {ok,{ServerIP,ServerPort}} = gen_utp:sockname(ListenSock).
{ok,{{0,0,0,0},60704}}

22> {ok,ClientSock} = gen_utp:connect("localhost", ServerPort, [{active,true}]).
{ok,#Port<0.617>}

23> receive {utp_async,ListenSock,Ref,{ok,ServerSock}} -> ServerSock end.
#Port<0.618>

24> gen_utp:send(ClientSock, '"this 1is a test").

ok

Friday, June 14, 13 37

Gen_utp Example

19> {ok,ListenSock} = gen_utp:listen(®, [{active,false},binary]).
{ok,#Port<0.616>}

20> {ok,Ref} = gen_utp:async_accept(ListenSock).

{ok,#Ref<0.0.0.177>}

21> {ok,{ServerIP,ServerPort}} = gen_utp:sockname(ListenSock).
{ok,{{0,0,0,0},60704}}

22> {ok,ClientSock} = gen_utp:connect("localhost", ServerPort, [{active,true}]).
{ok,#Port<0.617>}

23> receive {utp_async,ListenSock,Ref,{ok,ServerSock}} -> ServerSock end.
#Port<0.618>

24> gen_utp:send(ClientSock, '"this 1is a test").

ok

25> {ok,Msg} = gen_utp:recv(ServerSock, 0).

{ok,<<"this 1is a test'">>}

©

Friday, June 14, 13 38

Gen_utp Example

19> {ok,ListenSock} = gen_utp:listen(®, [{active,false},binary]).
{ok,#Port<0.616>}

20> {ok,Ref} = gen_utp:async_accept(ListenSock).

{ok,#Ref<0.0.0.177>}

21> {ok,{ServerIP,ServerPort}} = gen_utp:sockname(ListenSock).
{ok,{{0,0,0,0},60704}}

22> {ok,ClientSock} = gen_utp:connect("localhost", ServerPort, [{active,true}]).
{ok,#Port<0.617>}

23> receive {utp_async,ListenSock,Ref,{ok,ServerSock}} -> ServerSock end.
#Port<0.618>

24> gen_utp:send(ClientSock, '"this 1is a test").

ok

25> {ok,Msg} = gen_utp:recv(ServerSock, 0).

{ok,<<"this 1is a test'">>}

26> gen_utp:send(ServerSock, <<"this 1is also a test'>>).

ok

©

Friday, June 14, 13 39

Gen_utp Example

19> {ok,ListenSock} = gen_utp:listen(®, [{active,false},binary]).
{ok,#Port<0.616>}

20> {ok,Ref} = gen_utp:async_accept(ListenSock).

{ok,#Ref<0.0.0.177>}

21> {ok,{ServerIP,ServerPort}} = gen_utp:sockname(ListenSock).
{ok,{{0,0,0,0},60704}}

22> {ok,ClientSock} = gen_utp:connect("localhost", ServerPort, [{active,true}]).
{ok,#Port<0.617>}

23> receive {utp_async,ListenSock,Ref,{ok,ServerSock}} -> ServerSock end.
#Port<0.618>

24> gen_utp:send(ClientSock, '"this 1is a test").

ok

25> {ok,Msg} = gen_utp:recv(ServerSock, 0).

{ok,<<"this 1is a test'">>}

26> gen_utp:send(ServerSock, <<"this 1is also a test'>>).

ok

27> flush().

Shell got {utp,#Port<0.617>,"this 1is also a test"}

ok
©

Friday, June 14, 13 40

Gen_utp Internals

e libutp is a C++ library, so the Erlang driver is also C++
e libutp works via callbacks

e libutp implements the uTP protocol, you have to supply
all socket handling

e Sockets are UDP, libutp adds the protocol reliability

©

Friday, June 14, 13

41

Gen_utp Internals

e« Master branch has a C++ class hierarchy of Handlers

« Handlers implement socket handling, uTP handling, and
Erlang port handling

« Development branch (not yet working) breaks these into
parallel hierarchies of Handlers and Ports

©

Friday, June 14, 13

42

Handler Classes

Handler Classes

e SocketHandler: handles UDP sockets

Handler Classes

e SocketHandler: handles UDP sockets

e a listener uses a SocketHandler

Friday, June 14, 13

43

Handler Classes

e SocketHandler: handles UDP sockets
e a listener uses a SocketHandler

e UtpHandler: handles libutp callbacks

Friday, June 14, 13

43

Handler Classes

e SocketHandler: handles UDP sockets
e a listener uses a SocketHandler
e UtpHandler: handles libutp callbacks

e derived from SocketHandler

©

Friday, June 14, 13

43

Handling Events

« UDP sockets are registered in the Erlang runtime's
polling set

e Erlang runtime calls SocketHandlers when sockets have
Input

e libutp also has a timeout check that the uTP driver calls
every 10ms

©

Friday, June 14, 13

44

Port Classes

Port Classes

e DrvPort: abstract base class for all Port classes

Friday, June 14, 13

45

Port Classes

e DrvPort: abstract base class for all Port classes

e« MainPort: implements initial port into uTP driver

Friday, June 14, 13

45

Port Classes

e DrvPort: abstract base class for all Port classes
e« MainPort: implements initial port into uTP driver

e implements listen and connect calls

Friday, June 14, 13

45

Port Classes

e DrvPort: abstract base class for all Port classes
e MainPort: implements initial port into uTP driver
e implements listen and connect calls

e SocketPort: base class for ports dealing with SocketHandlers

Friday, June 14, 13

45

Port Classes

e DrvPort: abstract base class for all Port classes
e« MainPort: implements initial port into uTP driver
e implements listen and connect calls
e SocketPort: base class for ports dealing with SocketHandlers

e ListenPort: port returned from listen calls

Friday, June 14, 13

45

Port Classes

DrvPort: abstract base class for all Port classes

MainPort: implements initial port into uTP driver

e implements listen and connect calls

SocketPort: base class for ports dealing with SocketHandlers

e ListenPort: port returned from listen calls

UtpPort: base class for ports dealing with UtpHandlers

©

Friday, June 14, 13

45

Port Classes

DrvPort: abstract base class for all Port classes

MainPort: implements initial port into uTP driver

e implements listen and connect calls

SocketPort: base class for ports dealing with SocketHandlers

e ListenPort: port returned from listen calls

UtpPort: base class for ports dealing with UtpHandlers

e AcceptPort: port returned from accept calls

©

Friday, June 14, 13

45

Port Classes

DrvPort: abstract base class for all Port classes

MainPort: implements initial port into uTP driver

e implements listen and connect calls

SocketPort: base class for ports dealing with SocketHandlers

e ListenPort: port returned from listen calls

UtpPort: base class for ports dealing with UtpHandlers

e AcceptPort: port returned from accept calls

e« ConnectPort: port returned from connect calls

©

Friday, June 14, 13

45

Implementing Accept

Implementing Accept

e AUTP client "connects” to a uTP listener, but it's really
connectionless UDP underneath

Friday, June 14, 13

46

Implementing Accept

e AUuTP client "connects” to a uTP listener, but it's really
connectionless UDP underneath

e« TCP accept means "give me a new socket connected to
that client”, and we want the same semantics

©

Friday, June 14, 13

46

Implementing Accept

Implementing Accept

e For incoming connection requests:

Implementing Accept

e For incoming connection requests:

e open a new accept socket sharing the listen port (using
SO_REUSEADDR or SO_REUSEPORT)

Friday, June 14, 13

47

Implementing Accept

e For incoming connection requests:

e open a new accept socket sharing the listen port (using
SO_REUSEADDR or SO_REUSEPORT)

e connect(2) the UDP accept socket to the client (yes,
connect works for UDP too)

Friday, June 14, 13

47

Implementing Accept

e For incoming connection requests:

e open a new accept socket sharing the listen port (using
SO_REUSEADDR or SO_REUSEPORT)

e connect(2) the UDP accept socket to the client (yes,
connect works for UDP too)

e any subsequent traffic from that client is seen only by the
accept socket

©

Friday, June 14, 13

47

Implementing Accept

e FOor incoming connection requests:

e open a new accept socket sharing the listen port (using
SO_REUSEADDR or SO_REUSEPORT)

e connect(2) the UDP accept socket to the client (yes,
connect works for UDP too)

e any subsequent traffic from that client is seen only by the
accept socket

 all sends on the accept socket go only to that client (i.e.,
using send vs. sendto)

©

Friday, June 14, 13

47

Implementing Accept

e Unlike inet_drv, the uTP driver uses the driver queue for
reads, not writes

e Implementing {active,false} or {active,once} for TCP just
means deselecting the socket

e« UTP driver always has to read all incoming messages to
check if they're uTP messages, so it never deselects

e driver queue stores read messages not yet delivered
up through gen_utp

©

Friday, June 14, 13

48

Shortcomings

e No good way to implement a listen queue
e« UTP client will just timeout if nobody's accepting

e UTP is slow when closing a socket, seems to want to
exchange a bunch of messages

e libutp is not thread-safe, all access must be serialized

e Getting lifetimes of sockets, Erlang ports, and C++ handler
instances right is hard

e hoping the Handler/Port split will help

©

Friday, June 14, 13

49

Gen_utp Testing

e Definitely a work in progress!
e Integrated with Riak some months ago on a branch
e successfully performed small-scale handoff

e but no large-scale Riak testing yet

©

Friday, June 14, 13

50

Gen_utp Testing

Gen_utp Testing

e With direct Ethernet connection between two systems:

Friday, June 14, 13

51

Gen_utp Testing

e With direct Ethernet connection between two systems:

e same throughput as gen_tcp at 10baseT

Friday, June 14, 13

51

Gen_utp Testing

e With direct Ethernet connection between two systems:
e same throughput as gen_tcp at 10baseT

e same throughput as gen_tcp at 100baseT

Friday, June 14, 13

51

Gen_utp Testing

e With direct Ethernet connection between two systems:
e same throughput as gen_tcp at 10baseT
e same throughput as gen_tcp at 100baseT

e 2x slower than gen_tcp at 1000baseT

©

Friday, June 14, 13

51

Gen_utp Testing

e With direct Ethernet connection between two systems:
e same throughput as gen_tcp at 10baseT
e same throughput as gen_tcp at 100baseT
e 2Xx slower than gen_tcp at 1000baseT

e gen_utp shows higher CPU in all cases, most likely due
to copying forced by libutp callback interface

©

Friday, June 14, 13

51

Gen_utp Testing

Gen_utp Testing

e Lower throughput on fast networks could be a
showstopper, since datacenter LANs are usually fast

Friday, June 14, 13

52

Gen_utp Testing

e Lower throughput on fast networks could be a
showstopper, since datacenter LANs are usually fast

e Always deferring to TCP flows might not always be
desirable, for example:

Friday, June 14, 13

52

Gen_utp Testing

e Lower throughput on fast networks could be a
showstopper, since datacenter LANs are usually fast

e Always deferring to TCP flows might not always be
desirable, for example:

e when adding nodes to scale a cluster that's struggling
to keep up with load

Friday, June 14, 13

52

Gen_utp Testing

e Lower throughput on fast networks could be a
showstopper, since datacenter LANs are usually fast

e Always deferring to TCP flows might not always be
desirable, for example:

e when adding nodes to scale a cluster that's struggling
to keep up with load

e you want data transfer to happen as quickly as
possible so the new nodes help manage load

©

Friday, June 14, 13

52

Current Status

e gen_utp available at
https://github.com/basho-labs/gen_utp

e It mostly works but:

e recent updates for Erlang R16B introduced bugs on
master related to binary vs. list delivery

e current development branch (Handler/Port split) still
needs work

©

Friday, June 14, 13

53

https://github.com/basho-labs/gen_utp
https://github.com/basho-labs/gen_utp

Next Steps

Next Steps

Next Steps

e Next step: testing on a Riak cluster under load

Friday, June 14, 13

54

Next Steps

e Next step: testing on a Riak cluster under load

e Redesign the driver to work with Erlang's prim_inet layer

Friday, June 14, 13

54

Next Steps

e Next step: testing on a Riak cluster under load
e Redesign the driver to work with Erlang's prim_inet layer

e this should allow SSL to work over uTP

©

Friday, June 14, 13

54

Next Steps

 Next step: testing on a Riak cluster under load
e Redesign the driver to work with Erlang's prim_inet layer
e this should allow SSL to work over uTP

e If it doesn't help with congestion, consider using it for
Riak Enterprise multi-datacenter syncing over WANS

©

Friday, June 14, 13

54

Related Work

Related Work

e Jesper Louis Andersen (@jlouis) wrote a partial pure
Erlang implementation of uTP:
https://github.com/jlouis/erlang-utp

Friday, June 14, 13

55

https://github.com/jlouis/erlang-utp
https://github.com/jlouis/erlang-utp

Related Work

e Jesper Louis Andersen (@jlouis) wrote a partial pure
Erlang implementation of uTP:
https://github.com/jlouis/erlang-utp

e« He basically reverse engineered libutp

Friday, June 14, 13

55

https://github.com/jlouis/erlang-utp
https://github.com/jlouis/erlang-utp

Related Work

e Jesper Louis Andersen (@jlouis) wrote a partial pure
Erlang implementation of uTP:
https://github.com/jlouis/erlang-utp

e« He basically reverse engineered libutp

e | didn't use it because | thought libutp would make
things easier, and because | can layer SSL over a driver

©

Friday, June 14, 13

55

https://github.com/jlouis/erlang-utp
https://github.com/jlouis/erlang-utp

Related Work

e Jesper Louis Andersen (@jlouis) wrote a partial pure
Erlang implementation of uTP:
https://github.com/jlouis/erlang-utp

e« He basically reverse engineered libutp

e | didn't use it because | thought libutp would make
things easier, and because | can layer SSL over a driver

e He's stopped work on it but is willing to entertain pull
requests :)

©

Friday, June 14, 13 55

https://github.com/jlouis/erlang-utp
https://github.com/jlouis/erlang-utp

THANKS

http://basho.com
@stevevinosk

©

http://basho.com
http://basho.com

