

Zotonic

Making it fast!
Zotonic & performance

Erlang User Conference,
Stockholm, June 14 2013

Arjan Scherpenisse - arjan@miraclethings.nl

mailto:arjan@miraclethings.nl

Let's make a website!

I have <? PHP ?>

 It is on this machine.
 Everyone uses it.
 So it must be good.
 Let’s use it... (and think later)

I use <? PHP ?>

I use <? PHP ?>

I use <? PHP ?>

What happened?

 I got mentioned on popular blog
 Too many PHP+Apache processes
 Melt down

I can use PHP!

 Of course you can
 Use more hardware
 Use caching proxy
 Use xyz and a bit of abc
 Add complexity
 And keep it all running, all the time

Same for RoR, Django...

 The problem is not that you can’t scale

 The problem is that you need to scale
immediately

Yur site got /.'ed!

 Many people followed popular link
 A process per request
 Death by too many processes
 ... doing the same thing!

Most websites are...

 quite small
 e.g. less than a million pages
 except for a couple of huge ones

 not visited that much
 e.g. less than 10 pages per second
 Unless linked to from popular place
 Relative small set of “hot data”

That's why we are making Zotonic.

Zotonic's goals

 The frontender is in the driver's seat
 Reliable performance

 A web server should easily handle the load of 99% of
all web sites

 Maximise the use of hardware, do more with less
hardware and less watts

 Self-contained, sysadmin friendly
 No external services, CDN's, caching servers,

background workers.., and, no downtime

So, what's in the box?

So, what's in the box?

 Well, a lot :-P

So, what's in the box?

 Multiple sites
 Admin interface
 User management
 Page management
 Menu editor
 Commenting
 Image management
 Video embedding

 i18n
 E-mail sending,

receiving (!)
 Importer modules
 REST API
 …
 You name it, we

(probably) got it :)

The request stack

Steps for a request

 Accept
 Parse
 Dispatch

 (match host, URL, controller)
 Render template

 (fetch data)
 Serve the result

Where is the time spent?

 Simple request: 7.5k/sec
 Template rendering request: 10ms
 Lots of content: a lot less :p
 Fetching data & rendering should be optimized

What takes time?

 Fetch data from database
 Simple query roundtrip takes 1 – 10 ms

 Fetch data from caching server
 Network roundtrip = 0.5 ms

 So: do not hit the network or the database

What saves time?

 Don't repeat things that you could have done a
long time ago

 HTML escaping
 Content filtering
 (Zotonic stores sanitized / escaped content)

What saves time? pt II

 Combine similar (and especially simultaneous)
actions into one

 Requests
 DB results
 calculations...

Where can we save time

 Client-side caching
 Static files
 Templates
 In-memory caching

Client-side

 Let client (and proxies) cache css, javascript,
images etc.

 Combine css and javascript requests:
 http://example.org/lib/bootstrap/css/b
ootstrap~bootstrap-responsive~bootstra
p-base-site~/css/jquery.loadmask~z.gro
wl~z.modal~site~63523081976.css

Static files

 File requests are easily cached
 Checks on modification dates
 Cache both compressed and uncompressed

version
 Still access control checks for content (images,

pdfs etc.)

Templates

 Drive page rendering
 Compiled into Erlang byte code
 Using ErlyDTL

 Forked; we're merging it back

Template 101

Hello, {{ m.rsc[123].title }}

This is the id of your first image:
{{ m.rsc[123].o.depiction[1] }}

Search query:
{% for id in m.search[{query cat='person'}] %}
...

 Call the models – models responsible for caching
those results

Template caching

{% include “_template.tpl” maxage=100 %}

 and

{% cache 3600 vary=z_language %}
 This gets cached per language for an hour
{% endcache %}

 Whole and partial caching possible
 Maxage in dispatch rules

{page, [“hello”], controller_template,
 [{template, “hello.tpl”}, {maxage, 3600}]}

In-memory caching

1) Memo cache in process dictionary of the
request process

2) Central shared cache for the whole site
(“depcache”)

Memo cache

 In process heap of request handler
 Quick access to often used values
 Resources, ACL checks etc.
 Flushed on writes and when growing too big

Depcache

 Central cache per site
 ETS based

 Key dependencies for consistency
 Garbage collector thread

 Simple random eviction
 Sharing non-cached results between processes

z_depcache:memo(fun() … end, 0, Context)

Erlang VM considerations

 Cheap processes
 Expensive data copying on messages
 Binaries have their own heap
 String processing is expensive

 (as in any language)

Erlang VM and Zotonic

 Big data structure, #context{}
 Do most work in a single process
 Prune #context{} when messaging

 z_context:prune_for_{database, template, async}/1
 Messaging binaries is ok

Aside: Webmachine

 We created a fork, webZmachine
 No dispatch list copying
 No Pmods
 Memo of some lookups
 Optimizations (process dictionary removal,

combine data structures)
 Custom dispatcher (different way of treating

vhosts)

Slam dunk protection

 Happens on startup, change of images,
templates, memory cache flush etc.

 Let individual requests fail
 Build in artificial bottlenecks

 Single template compiler process
 Single image resize process
 Memo cache – share computations

 mod_failwhale
 Measure system load, serve 503 page, retry-after

So, what about performance?

http://www.techempower.com/benchmarks/

http://www.techempower.com/benchmarks/

How important are these, really?

 JSON test
 Spit out “hello world” in json

 What are you testing?
 HTTP parsing?
 JSON encoding?
 Your TCP/IP stack?

 Well, OK, Zotonic does NOT do so well...

Platform x1000 req/sec

Node.js 27

Cowboy 31

Elli 38

Zotonic 5.5

Zotonic w/o logging 7.5

Zotonic w/ dispatcher process pool 8.5

Some numbers

i7 quadcore M620 @ 2.67GHz

wrk -c 3000 -t 3000 http://localhost:8080/json

Techempower conclusions

 We can improve some stuff
 Compiled dispatch rule / host matching
 Migrate to webserver that handles binaries (Elli or

Cowboy)
 Merge Webzmachine ReqData/Context params
 Caching template timestamps – speedup freshness

check
 Not every framework implements the same test.
 Pose artificial restrictions on the tests?

 Zotonic's memory-caching is fast...

A recent project

Kroonappels

 Nation-wide voting weekend
 Client requested 100% availability + high

performance
 100k “votes” in 1 hour

 3x Rackspace VPS nodes, 2 GB, load balanced

Kroonappels

 1 vote was about 30 requests
 Dynamic i18n HTML
 Ajax
 Static assets

 Load test needed adjustments
 Did not push to the max

 Stopped at 500k votes / hr; 1.5M req/hr
 Customer satisfied :-)

Kroonappels – made with Zynamo

 Data layer
 Distribution ring based on Dynamo principles
 Consistent hashing, work distribution
 Service architecture w/ GET/PUT/DELETE semantics
 Like riak_core without vnodes

Service oriented

Zynamo's downside

 Hard...
 to maintain,
 to do caching
 to write new stuff
 there are DBMS's that can do this for us

 Got us thinking: Do we really need this scale?

What do we want?

 Multiple machines, but for error recovery
 Hardware errors
 Hardware upgrades

 Hot failover

The P2P idea

 Trusted P2P ring of collaborative Zotonic
machines

 Reliable messaging / notification
 Poldercast P2P model

 Synced database backups / assets
 Bittorrent protocol for large files
 WAL for db delta's

 Sites are vertical, data silo's
 Run our own DNS?

Thank you!

 Book chapter: “The performance of Open Source
Applications” coming out soon (
http://www.aosabook.org/)

 …and chat with me & Andreas :-)
 Come get a tshirt!

 Online resources:
 http://zotonic.com
 @zotonic - http://twitter.com/zotonic
 IRC, XMPP, mailing lists
 Talk slides, tutorial slides, tutorial source code...

http://www.aosabook.org/
http://zotonic.com/
http://twitter.com/zotonic

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49

