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but I like monoliths...



alt text

"Klarna's next generation 
architecture:

A soft-realtime, distributed, 
no-master system enabling 

the best SLA in online 
payments."



id

● Ph.D. in experimental Nuclear Physics
○ hardware
○ online software
○ offline software

● 10 years @ ericsson
○ building
○ testing
○ troubleshooting
○ supporting

● 5 years @ klarna
○ developer
○ architect

● github.com/massemanet



klarna vision



klarna goals
keep it simple for the consumer

● no pre-registration
● id with top of mind info
● separate buying from paying

we'll want to buy more stuff on the 
internet it the stores send us stuff, and 
we only pay the store if we like the stuff.



klarna requirements
● invoicing

○ with real-time risk assessment (~3s)
○ with unreliable data

● many settlement options
● customer care (~500)

● fraud
○ merchants
○ consumers

● very high availability (~99.9)



checkout



● order creation API
● ID service

○ identify a legal entity
○ on the internet...

● risk service
○ prevent fraud and defaults

● in "real time"...

secret sauce
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growing pains



magnitudes



dtop

-------------------------------------------------------------------------------
kred@kred-psize: 493.4G( 530.6G), cpu%: 362(366), procs: 1.6k, runq: 0, 16:17:03
memory:      proc   18.4G, atom    5.0M, bin  496.1M, code   57.0M, ets  474.4G

pid            name                         current             msgq    mem cpu
<0.28894.66>   yaws_server:acceptor0/2      etrans:mk_date_li      0  17.0G 190
<0.25.0>       file_server_2                gen_server:loop/6      0   8.2M  11
<0.17983.74>   yaws_server:acceptor0/2      gen:do_call/4          0   1.9M   9
<0.9604.73>    yaws_server:acceptor0/2      prim_inet:recv0/3      0   7.6M   1
<0.23590.74>   yaws_server:acceptor0/2      prim_inet:recv0/3      0   1.8M   1
<0.26.0>       code_server                  code_server:loop/      0 426.0k   1
-------------------------------------------------------------------------------



domains

● Soft real time
● Off-line analysis
● Customer GUI
● External Systems
● Data Warehousing
● Routine financial

KRED



K2

● Break kred into services
○ FRED is one such service
○ BENDER is all other services

FRED BENDER

DB

KRED



decoupling

● Horizontal scaling
● Concurrent and independent 

development
● Loose coupling, both with 

respect to functionality and data



BENDER from outer space

Data Vault (hadoop)



BENDER services

● GUIs
● bookkeeping
● business intelligence
● accounts
● printing
● dunning
● etc...



FRED

● Service that creates orders
○ Business logic ported from kred
○ Soft real-time (~3 seconds)

●



FRED scope
● some API methods
● checkout
● ID service
● risk service
○ on the spot reject (FRED)
○ external (kred)
○ fallback policy (FRED)



FRED knockouts

● Site
○ a data center

● FRED clusters
○ independent of each other
○ initially one cluster per site

● FRED machine
○ ~5 per cluster

● FRED service
○ an orchestrated component



FRED from low earth orbit

riak
riak
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MQ



FRED tech stack
● Redhat Enterprise Linux
● webmachine
● mochiweb
● Riak
● Rabbit MQ
● Erlang
● Git
● Chef
● rebar
● splunk

http://www.redhat.com/products/enterprise-linux/
http://www.redhat.com/products/enterprise-linux/
https://github.com/basho/webmachine
https://github.com/basho/webmachine
https://github.com/mochi/mochiweb
https://github.com/mochi/mochiweb
http://basho.com/riak/
http://basho.com/riak/
http://www.rabbitmq.com/
http://www.rabbitmq.com/
http://www.erlang.org/
http://www.erlang.org/
http://git-scm.com/
http://git-scm.com/
http://www.opscode.com/chef/
http://www.opscode.com/chef/
https://github.com/basho/rebar
https://github.com/basho/rebar


why riak?
● Distribution -> no transactions
● FRED data model -> key/value
● lots of attention to operations
● basho produces quality stuff
● riak search interesting
● competition looked worse
● data center replication intriguing



siblings

● "everything that touches Riak needs 
to be resolvable in some way."
○ merging
○ pick one
○ make siblings impossible



migration
● ~15,000 existing merchants

○ we must preserve (most) integrations
● ~10 versions of the API in use
● many merchants rely on quirks

therefore

large parts of FRED are backported



FRED migration
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resistance



obstacles

● NIH
● new programming model
● untangling spaghetti is hard
● lot of infrastructure, HW and SW
● compatibility
● no spec



hell yeah

A soft-realtime, distributed, 
no-master system enabling 

the best SLA in online 
payments.


