
crushing the monolith
mats cronqvist, may 2013

but I like monoliths...

alt text

"Klarna's next generation
architecture:

A soft-realtime, distributed,
no-master system enabling

the best SLA in online
payments."

id

● Ph.D. in experimental Nuclear Physics
○ hardware
○ online software
○ offline software

● 10 years @ ericsson
○ building
○ testing
○ troubleshooting
○ supporting

● 5 years @ klarna
○ developer
○ architect

● github.com/massemanet

klarna vision

klarna goals
keep it simple for the consumer

● no pre-registration
● id with top of mind info
● separate buying from paying

we'll want to buy more stuff on the
internet it the stores send us stuff, and
we only pay the store if we like the stuff.

klarna requirements
● invoicing

○ with real-time risk assessment (~3s)
○ with unreliable data

● many settlement options
● customer care (~500)

● fraud
○ merchants
○ consumers

● very high availability (~99.9)

checkout

● order creation API
● ID service

○ identify a legal entity
○ on the internet...

● risk service
○ prevent fraud and defaults

● in "real time"...

secret sauce

kred

KRED

XMLRPC

Batch
estores

GUI

Customers

Banks

Web Phone

Payments

Payments

Settlements &
reports

Purchases,
credits, ...

Ageing

Creditcheck Lookup

Printing
(EDB)

Lend

Email
SMS

Booking

Customer
service

GUI

Trio

Economy &
fraud

GUI

SIE

Reports

Backup

growing pains

magnitudes

dtop

kred@kred-psize: 493.4G(530.6G), cpu%: 362(366), procs: 1.6k, runq: 0, 16:17:03
memory: proc 18.4G, atom 5.0M, bin 496.1M, code 57.0M, ets 474.4G

pid name current msgq mem cpu
<0.28894.66> yaws_server:acceptor0/2 etrans:mk_date_li 0 17.0G 190
<0.25.0> file_server_2 gen_server:loop/6 0 8.2M 11
<0.17983.74> yaws_server:acceptor0/2 gen:do_call/4 0 1.9M 9
<0.9604.73> yaws_server:acceptor0/2 prim_inet:recv0/3 0 7.6M 1
<0.23590.74> yaws_server:acceptor0/2 prim_inet:recv0/3 0 1.8M 1
<0.26.0> code_server code_server:loop/ 0 426.0k 1

domains

● Soft real time
● Off-line analysis
● Customer GUI
● External Systems
● Data Warehousing
● Routine financial

KRED

K2

● Break kred into services
○ FRED is one such service
○ BENDER is all other services

FRED BENDER

DB

KRED

decoupling

● Horizontal scaling
● Concurrent and independent

development
● Loose coupling, both with

respect to functionality and data

BENDER from outer space

Data Vault (hadoop)

BENDER services

● GUIs
● bookkeeping
● business intelligence
● accounts
● printing
● dunning
● etc...

FRED

● Service that creates orders
○ Business logic ported from kred
○ Soft real-time (~3 seconds)

●

FRED scope
● some API methods
● checkout
● ID service
● risk service
○ on the spot reject (FRED)
○ external (kred)
○ fallback policy (FRED)

FRED knockouts

● Site
○ a data center

● FRED clusters
○ independent of each other
○ initially one cluster per site

● FRED machine
○ ~5 per cluster

● FRED service
○ an orchestrated component

FRED from low earth orbit

riak
riak

load
balancer

service orchestration engine

BET

riak

S S S S

data base abstraction layer

MQ

FRED tech stack
● Redhat Enterprise Linux
● webmachine
● mochiweb
● Riak
● Rabbit MQ
● Erlang
● Git
● Chef
● rebar
● splunk

http://www.redhat.com/products/enterprise-linux/
http://www.redhat.com/products/enterprise-linux/
https://github.com/basho/webmachine
https://github.com/basho/webmachine
https://github.com/mochi/mochiweb
https://github.com/mochi/mochiweb
http://basho.com/riak/
http://basho.com/riak/
http://www.rabbitmq.com/
http://www.rabbitmq.com/
http://www.erlang.org/
http://www.erlang.org/
http://git-scm.com/
http://git-scm.com/
http://www.opscode.com/chef/
http://www.opscode.com/chef/
https://github.com/basho/rebar
https://github.com/basho/rebar

why riak?
● Distribution -> no transactions
● FRED data model -> key/value
● lots of attention to operations
● basho produces quality stuff
● riak search interesting
● competition looked worse
● data center replication intriguing

siblings

● "everything that touches Riak needs
to be resolvable in some way."
○ merging
○ pick one
○ make siblings impossible

migration
● ~15,000 existing merchants

○ we must preserve (most) integrations
● ~10 versions of the API in use
● many merchants rely on quirks

therefore

large parts of FRED are backported

FRED migration
FRED KRED

RPC-API

get_addresses

reserve_amount

add_invoice

Platform

DB (Riak)

FRED Core

RPC-API

get_addresses

reserve_amount

add_invoice

Legacy

DB (Mnesia)
Import/Export

API Request

(unsupported) (other APIs)
Proxy :

status
FRED KRED

RPC-API

get_addresses

Platform

DB (Riak)

FRED Core

RPC-API

get_addresses

reserve_amount

add_invoice

Legacy

DB (Mnesia)
Import/Export

API Request

(unsupported) (other APIs)
Proxy :

resistance

obstacles

● NIH
● new programming model
● untangling spaghetti is hard
● lot of infrastructure, HW and SW
● compatibility
● no spec

hell yeah

A soft-realtime, distributed,
no-master system enabling

the best SLA in online
payments.

